Global Downscaling of Remotely-Sensed Soil Moisture using Neural Networks

Seyed Hamed Alemohammad1,2, Jana Kolassa3,4, Catherine Prigent1,2,5, Filipe Aires1,2,5, Pierre Gentine1,2,6

1Department of Earth and Environmental Engineering, Columbia University
2Columbia Water Center, Columbia University
3Universities Space Research Association, Columbia, MD
4Global Modelling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD
5Observatoire de Paris
6Earth Institute, Columbia University

Correspondence to: Pierre Gentine (pg2328@columbia.edu)

Supplementary Materials
Figure S1- Percentage bias between the SMAP 9km soil moisture estimates and NN 9km estimates. White regions indicate no data.
Figure S2- Correlation coefficient (R^2) between SMAP observed soil moisture at 9km and Interpolated soil moisture at 9km. White regions indicate no data.
Figure S3- Percentage bias between the SMAP 9km soil moisture estimates and Interpolated 9km estimates. White regions indicate no data.
Figure S4- Correlation coefficient (R^2) between SMAP observed soil moisture at 9km and No Heterogeneity soil moisture estimates at 9km. White regions indicate no data.
Figure S5- Percentage bias between the SMAP 9km soil moisture estimates and No Heterogeneity 9km estimates. White regions indicate no data.
Figure S6- Location of each ISMN station used for comparison against downscaled soil moisture estimates