A simple topography-driven and calibration-free runoff generation module

Hongkai Gao¹²³ *, Christian Birkel⁴⁵, Markus Hrachowitz⁶, Doerthe Tetzlaff⁵, Chris Soulsby⁵, Hubert H. G. Savenije⁶

¹ Key Laboratory of Geographic Information Science (Ministry of Education of China), East China Normal University, Shanghai, China.
² School of Geographical Sciences, East China Normal University, Shanghai, China.
³ Julie Ann Wrigley Global Institute of Sustainability, Arizona State University PO Box 875402. Tempe, AZ 85287-5402.
⁴ Department of Geography, University of Costa Rica, San José, Costa Rica
⁵ Northern Rivers Institute, University of Aberdeen, Scotland.
⁶ Water Resources Section, Delft University of Technology, Delft, Netherlands.

*Corresponding to Hongkai Gao (hkgao@geo.ecnu.edu.cn)

Abstract

Reading landscapes and developing calibration-free runoff generation models that adequately reflect land surface heterogeneities remains the focus of much hydrological research. In this study, we report a novel and simple topography-driven runoff generation parameterization – the HAND-based Storage Capacity curve (HSC), that uses a topographic index (HAND, Height Above the Nearest Drainage) to identify hydrological similarity and the extent of saturated areas in catchments. The HSC can be used as a module in any conceptual rainfall-runoff model. Further, coupling the HSC parameterization with the Mass Curve Technique (MCT) to estimate root zone storage capacity (SuMax), we developed a calibration-free runoff generation module HSC-MCT. The runoff generation modules of HBV and TOPMODEL were used for comparison purposes. The performance of these two modules (HSC and HSC-MCT) was first checked against the data-rich Bruntland Burn (BB) catchment in Scotland, which has a long time series of field-mapped saturation area extent. We found that the HSC performed better in reproducing the spatio-temporal pattern of the observed saturated areas in the BB compared to TOPMODEL. The HSC and HSC-MCT modules were subsequently tested for 323 MOPEX catchments in the US, with diverse climate, soil,
vegetation and geological characteristics. Comparing with HBV and TOPMODEL, the HSC performs better in both calibration and validation. Despite having no calibrated parameters, the HSC-MCT module performed comparably well with calibrated modules, highlighting the robustness of the HSC parameterization to describe the spatial distribution of the root zone storage capacity and the efficiency of the MCT method to estimate S_{shmax}. Moreover, the HSC-MCT module facilitated effective visualization of the saturated area, which has the potential to be used for broader hydrological, ecological, climatological, geomorphological, and biogeochemical studies.

1 Introduction

Determining the volume and timing of runoff generation from rainfall inputs remains a central challenge in rainfall-runoff modelling (Beven, 2012; McDonnell, 2013). Creating a simple, calibration-free, but robust runoff generation module has been, and continues to be, an essential pursuit of hydrological modellers. Although we have made tremendous advances to enhance our ability on Prediction in Ungauged Basins (PUB) (Hrachowitz et al., 2013), it is not uncommon that models become increasingly complicated in order to capture the details of hydrological processes shown by empirical studies (McDonnell, 2007; Sivapalan, 2009). More detailed process conceptualization normally demands higher data requirements than our standard climatological and hydrological networks can provide, leading to more calibrated parameters and a probable increase in model uncertainty (Sivapalan, 2009).

Hydrological connectivity is a key characteristic of catchment functioning, controlling runoff generation. It is a property emerging at larger scales, describing the temporal dynamics of how spatially heterogeneous storage thresholds in different parts of catchments are exceeded to contribute to storm runoff generation and how they are thus “connected to the stream” (e.g. Zehe and Blöschl, 2004; Bracken and Croke, 2007; Lehmann et al., 2007; Zehe and Sivapalan, 2009; Ali et al., 2013; Blume and van Meerveld, 2015). Connectivity is controlled by a multitude of factors (Ali and Roy, 2010), including but not limited to surface (e.g. Jencso et al., 2009) and subsurface topography (e.g. Tromp-van Meerveld and McDonnell, 2006), soils (including preferential flow networks; e.g. Zehe et al., 2006; Weiler and McDonnell, 2007) and land cover (e.g. Imeson and Prinsen, 2004; Jencso and McGlynn, 2011; Emanuel et al., 2014) but also by the wetness state of the system (e.g. Detty and McGuire, 2010; Penna et al., 2011; McMillan et al., 2014; Nippgen et al., 2015).
In detailed distributed hydrological bottom-up models, connectivity emerges from the interplay of
topography, soil type and water table depth. For example, TOPMODEL (Beven and Kirkby, 1979; Beven
and Freer, 2001) uses topographic information to distinguish hydrologic similarity; and SHE (Abbott et al.
1986) and tRIBS (Ivanov et al. 2004; Vivoni et al. 2005) use partial differential equations to describe the
water movement based on pressure gradients obtained by topography; and the Representative
Elementary Watershed (REW) approach divides catchment into a number of REWs to build balance and
constitutive equations for hydrological simulation (Reggiani et al., 1999; Zhang and Savenije, 2005; Tian
et al., 2008). As the relevant model parameters such as local topographic slope and hydraulic
conductivity can, in spite of several unresolved issues for example relating to the differences in the
observation and modelling scales (e.g. Beven, 1989; Zehe et al., 2014), be obtained from direct
observations, they could in principle be applied without calibration.

Zooming out to the macro-scale, top-down models, in contrast, are based on emergent functional
relationships that integrate system-internal heterogeneity (Sivapalan, 2005). These functional
relationships require parameters that are effective on the modelling scale and that can largely not be
directly determined with small-scale field observations (cf. Beven, 1995). Parameters in these models
are therefore traditionally determined by calibration. However, frequently the number of observed
variables for model calibration is, if available at all, limited to time series of stream flow. The absence of
more variables to constrain models results in such models being ill-posed inverse problems. Equifinality
in parameterization and in the choice of parameters then results in considerable model uncertainty (e.g.
Beven, 1993, 2006). To limit this problem and to also allow predictions in the vast majority of
catchments worldwide that remain ungauged it is therefore desirable to find ways to directly infer
effective model parameters at the modelling scale from readily available data (Hrachowitz et al., 2013).

The component that is central for establishing connectivity in most top-down models is the soil moisture
routine. Briefly, it controls the dynamics of water storage and release in the unsaturated root zone and
partitions water into evaporative fluxes, groundwater recharge and fast lateral, storm flow generating
runoff. The latter of which is critical from the aspect of connectivity. In regions where Hortonian
overland flow (i.e. infiltration excess overland flow) is of minor importance, the term fast lateral flows
can represent, depending on the model and the area of application, different processes, such as
saturation overland flow, preferential flow, flow through shallow, high permeability soil layers or
combinations thereof. The interplay between water volumes that are stored and those that are released
laterally to the stream via fast, connected flow paths (“connectivity”) is in most top-down models
described by functions between water stored in the unsaturated root zone ("soil moisture") and the areal proportion of heterogeneous, local storage thresholds that are exceeded and thus "connected" (Zhao et al., 1980). In other words, in those parts of a catchment where the storage threshold is exceeded, no more additional water can be stored and additional water input in these parts of the catchment will generate fast, lateral flows. This areal proportion of the catchment where thresholds are exceed can alternatively be interpreted as runoff coefficient (e.g. Ponce and Hawkins, 1996; Perrin and Andreassian, 2001; Fenicia et al., 2007; Bergström and Lindström, 2015). The idea goes back to the variable contributing area concept, assuming that only partial areas of a catchment, where soils are saturated and thus storage thresholds are exceeded, contribute to runoff (Hewlett, 1961; Dunne and Black, 1970; Hewlett and Troendle, 1975). Although originally developed for catchments dominated by saturation overland flow, the extension of the concept to subsurface connectivity, posing that surface and subsurface connectivity are "two sides of the same coin" (McDonnell, 2013), proved highly valuable for models such as Xinanjiang (Zhao et al., 1980), HBV (Bergström and Forsman, 1973; Bergström and Lindström, 2015), SCS-CN (Ponce and Hawkins, 1996; Bartlett et al., 2016), FLEX (Fenicia et al., 2008) or GR4J (Perrin and Andreassian et al., 2001), applied in other regions, too.

The parameters of these storage excess distribution functions are typically calibrated. In spite of being the core component of soil moisture routines in many top-down models, little effort was previously invested to find ways to determine the shape of the functions describing the spatial heterogeneity of storage thresholds and thus connectivity pattern at the catchment-scale directly from available data. An important step towards understanding and quantifying connectivity pattern directly based on observations was recently achieved by intensive experimental work in the Tenderfoot Creek catchments in Montana, US. In their work Jencso et al. (2009) were able to show that connectivity of individual hillslopes in their headwater catchments is highly related to their respective upslope accumulated areas. Using this close relationship, Smith et al. (2013) successfully developed a simple top-down model with very limited need for calibration, emphasizing the value of "enforcing field-based limits on model parameters" (Smith et al., 2016). Based on hydrological landscape analysis, Savenije (2010) suggested that as topographical features are frequently linked to distinct hydrological functional traits, they may potentially be used to construct a conceptual catchment model based on a perceptual model of hydrological units. Gharari et al., 2014 found that by imposing semi-quantitative relational constraints, the FLEX-Topo model can dramatically reduce the need for calibration. The model has also shown to hold considerable potential for spatial model transferability without the need for parameter re-calibration (Gao et al., 2014a; H. Gao et al., 2016).
In many top-down models, such as Xinanjiang or HBV, connectivity is formulated in a general form as

\[C_R = f(S_U(t), S_{uMax}, \beta) \]

where \(C_R \) is the runoff coefficient, i.e. the proportion of the catchment generating runoff, \(S_U(t) \) is the catchment water content in the unsaturated root zone at any time \(t \), \(S_{uMax} \) is a scale parameter representing the total storage capacity in the unsaturated root zone and \(\beta \) is a shape parameter, representing the spatial distribution of heterogeneous storage capacities in the unsaturated root zone. In a recent development, several studies suggest that \(S_{uMax} \) can be robustly and directly inferred long term water balance data, by the Mass Curve Technique (MCT), without the need for further calibration (Gao et al., 2014; de Boer-Euser et al., 2016; Nijzink et al., 2016). This leaves shape parameter \(\beta \) as only free calibration parameter for soil moisture routines of that form.

Topography is often the dominant driver of water movement caused by prevailing hydraulic gradients. More crucially, topography usually provides an integrating indicator for hydrological behavior, since topography is usually closely related with other landscape elements, such as soil vegetation climate and even geology (Seibert et al., 2007; Savenije, 2010; Rempe and Dietrich, 2014; Gao et al., 2014b; Maxwell and Condon, 2016; Gomes, 2016). The Height Above the Nearest Drainage (HAND; Rennó et al., 2008; Nobre et al., 2011; Gharari et al., 2011), which can be computed from readily available digital elevation models, could potentially provide first order estimates of groundwater depth, as there is some experimental evidence that with increasing HAND, groundwater depths similarly increase (e.g. Haria and Shand, 2004; Martin et al., 2004; Molenat et al., 2005, 2008; Shand et al., 2005; Condon and Maxwell, 2015; Maxwell and Condon, 2016). HAND can be interpreted as a proxy of the hydraulic head and is thus more potentially more hydrologically informative than the topographic elevation above sea level (Nobre et al., 2011). Compared with the Topographic Wetness Index (TWI) in TOPMODEL, HAND is an explicit measure of a physical feature linking terrain to water relative to the potential energy for local drainage (Nobre et al., 2011). More interestingly, topographic structure emerges as a powerful force determining rooting depth under a given climate or within a biome, revealed by ecological observations in global scale (Fan et al., 2017). This leads us to think from ecological perspective to use the topographic information as an indicator for root zone spatial distribution without calibrating the \(\beta \), and coupling it with the MCT method to estimate the \(S_{uMax} \), eventually create a calibration-free runoff generation module.

In this study we are therefore going to test the hypotheses that: (1) HAND can be linked to the spatial distribution of storage capacities (\(\beta \)) and therefore can be used to develop a new runoff generation module; (2) the distribution of storage capacities determined by HAND contains different information than the topographic wetness index; (3) the estimates of \(\beta \) together with water balance-based estimates
of \(S_{\text{suMax}} \) allow the formulation of calibration-free parameterizations of soil moisture routines in top-down models directly based on observations. All these hypotheses will be tested firstly in a small data-rich experimental catchment (the Bruntland Burn catchment in Scotland), and then apply the model to a wide range of larger catchments (MOPEX, Model Parameter Estimation Experiment).

This paper is structured as follows. In the Methods section, we describe two of our proposed modules, i.e. HSC (HAND-based Storage Capacity curve) and HSC-MCT, and two benchmark models (HBV, TOPMODEL). This section also includes the description of other modules (i.e. interception, evaporation and routing) in rainfall-runoff modelling, and the methods for model evaluation, calibration and validation. The Dataset section reviews the empirically-based knowledge of the Bruntland Burn catchment in Scotland and the hydrometerological and topographic datasets of MOPEX catchments in the US for model comparison. The Results section presents the model comparison results. The Discussion section interprets the relation between rainfall-runoff processes and topography, catchment heterogeneity and simple model, and the implications and limitations of our proposed modules. The conclusions are briefly reviewed in the Summary and Conclusions section.

2 Methods

Based on our perceptual model that SEF is the dominant runoff generation mechanism in most cases, we developed the HAND-based Storage Capacity curve (HSC) module. Subsequently, estimating the parameter of root zone storage capacity (\(S_{\text{suMax}} \)) by the Mass Curve Techniques (MCT) without calibration, the HSC-MCT was developed. In order to assess the performance of our proposed modules, two widely-used runoff generation modules, i.e. HBV power function and TOPMODEL module, were set as benchmarks. Other modules, i.e. interception, evaporation and routing, are kept with identical structure and parameterization for the four rainfall-runoff models (HBV, TOPMODEL, HSC, HSC-MCT, whose names are from their runoff generation modules), to independently diagnose the difference among runoff generation modules (Clark et al., 2008; 2010).

2.1 Two benchmark modules

HBV power function

The HBV runoff generation module applies an empirical power function to estimate the nonlinear relationship between the runoff coefficient and soil moisture (Bergström and Forsman, 1973; Bergström and Lindström, 2015). The function is written as:
\[A_i = \left(\frac{S_u}{S_{\text{uMax}}} \right)^\beta \]

Where \(A_i \) (-) represents the contributing area, which equals to the runoff coefficient of a certain rainfall event; \(S_u \) (mm) represents the averaged root zone soil moisture; \(S_{\text{uMax}} \) (mm) is the averaged root zone storage capacity of the studied catchment; \(\beta \) (-) is the parameter determining the shape of the power function. The prior range of \(\beta \) can be from 0.1 to 5. The \(S_u - A_i \) has a linear relation while \(\beta \) equals to 1. And the shape becomes convex while the \(\beta \) is less than 1, and the shape turns to concave while the \(\beta \) is larger than 1. In most situations, \(S_{\text{uMax}} \) and \(\beta \) are two free parameters, cannot be directly measured at the catchment scale, and need to be calibrated based on observed rainfall-runoff data.

TOPMODEL module

The TOPMODEL assumes topographic information captures the runoff generation heterogeneity at catchment scale, and the TWI is used as an index to identify rainfall-runoff similarity (Beven and Kirkby, 1979; Sivapalan et al., 1997). Areas with similar TWI values are regarded as possessing equal runoff generation potential. More specifically, the areas with larger TWI values tend to be saturated first and contribute to SEF; but the areas with lower TWI values need more water to reach saturation and generate runoff. The equations are written as follow:

\[D_i = \bar{D} + S_{\text{uMax}}(\bar{I}_{\text{TW}} - I_{TW}) \]

\[\bar{D} = S_{\text{uMax}} - S_u \]

\[A_i = \sum A_{i,j}; \text{ while } D_i < 0 \]

Where \(D_i \) (mm) is the local storage deficit below saturation at specific location (\(i \)); \(\bar{D} \) (mm) is the averaged water deficit of the entire catchment (Equation 2), which equals to \((S_{\text{uMax}} - S_u) \), as shown in Equation 3. \(I_{\text{TW}} \) is the local \(I_{\text{TW}} \) value. \(\bar{I}_{\text{TW}} \) is the averaged TWI of the entire catchment. Equation 2 means in a certain soil moisture deficit condition for the entire catchment (\(\bar{D} \)), the soil moisture deficit of a specific location (\(D_i \)), is determined by the catchment topography (\(I_{\text{TW}} \) and \(I_{\text{TW}} \)), and the root zone storage capacity (\(S_{\text{uMax}} \)). Therefore, the areas with \(D_i \) less than zero are the saturated areas (\(A_{i,j} \)), equal to the contributing areas. The integration of the \(A_{i,j} \) areas (\(A_i \)), as presented in Equation 4, is the runoff contributing area, which equals to the runoff coefficient of that rainfall event.
Besides continuous rainfall-runoff calculation, Equations 2-4 also allow us to obtain the contributing area \(A_i \) from the estimated relative soil moisture \(S_a/S_{d\text{Max}} \), and then map it back to the original TWI map, which makes it possible to test the simulated contributing area by field measurement. It is worth mentioning that the TOPMODEL in this study is a simplified version, and not identical to the original one, which combines the saturated and unsaturated soil components.

2.2 HSC module

Hydrological models are human constructs that simplify the larger reality of hydrological processes (Savenije, 2009), and assumptions are inevitable (Neuweiler and Helmig, 2017). In this study, we assume 1) SEF is the dominant runoff generation mechanism, while SOF and SSF cannot be distinguished; 2) the local root zone storage capacity has a positive and linear relationship with HAND, from which we can derive the spatial distribution of the root zone storage capacity; 3) HAND contours are parallel to each other in runoff generation. We believe that rainfall firstly feeds local soil moisture deficit, and no runoff can be generated before areas being subsequently saturated and water moving downslope. And after being saturated and connected with the channel network, either the cascade or parallel model structure does not impact on runoff generation. So this parallel model structure not only simplifies our simulation, it is also very likely closer to reality (Savenije, 2010).

Figure 1 shows the perceptual HSC module, in which we simplified the complicated 3-D topography of a real catchment into a 2-D simplified hillslope. And then derive the distribution of root zone storage capacity, based on topographic analysis and the second assumption as mentioned in the preceding paragraph. Figure 2 shows the approach to derive the \(S_a-A_i \) relation, which are detailed as follows.

I. Generate HAND map. The HAND map of study catchment can be generated from Digital Elevation Model (DEM) (Gharari et al., 2011). The stream initiation threshold area is a crucial parameter, determining the perennial river channel network (Montgomery and Dietrich, 1989; Hooshyar et al., 2016), and significantly impacting the HAND values.

II. Generate normalized HAND distribution curve. Firstly, sort the HAND values of grid cells in ascending order. Secondly, the sorted HAND values were evenly divided into \(n \) bands (e.g. 20 bands in this study), to make sure each HAND band has similar area. The averaged HAND value of each band is regarded as the HAND value of that band. Thirdly, normalize the HAND bands, and then plot the normalized HAND distribution curve (Figure 1b).

III. Distribute \(S_{d\text{Max}} \) to each HAND band \((S_{d\text{Max},i}) \). As assumed, the normalized storage capacity of each HAND band \((S_{d\text{Max},i}) \) increases with HAND value (Figure 1c). Based on this assumption, the
unsaturated root zone storage capacity (S_{uMax}) can be distributed to each HAND band as $S_{u_{\text{Max},i}}$ (Figure 2a). It is worth noting that $S_{u_{\text{Max}}}$ needs to be calibrated in the HSC module, but free of calibration in the HSC-MCT module.

IV. **Derive the $S_u - A_s$ curve.** With the number of s saturated HAND bands (Figure 2a-c), the soil moisture (S_u) can be obtained by Equation 5; and saturated area proportion (A_s) can be obtained by Equation 6.

$$S_u = \frac{1}{n} \left[\sum_{i=1}^{s} S_{u_{\text{Max},i}} + S_{u_{\text{Max},s}}(n-s) \right]$$ \hspace{1cm} (5)$$

$$A_s = \frac{s}{n}$$ \hspace{1cm} (6)

Where $S_{u_{\text{Max},s}}$ is the maximum $S_{u_{\text{Max},i}}$ of all the saturated HAND bands. Subsequently, the $A_s - S_u$ curve can be derived, and shown in Figure 2d.

The SEF mechanism assumes that only the saturated areas generate runoff, therefore the proportion of saturation area is equal to the runoff coefficient of that rainfall-runoff event. Based on the $S_u - A_s$ curve in Figure 2d, generated runoff can be calculated from root zone moisture (S_u). The HSC module also allows us to map out the fluctuation of saturated areas by the simulated catchment average soil moisture. For each time step, the module can generate the simulated root zone moisture for the entire basin (S_u). Based on the $S_u - A_s$ relationship (Figure 2d), we can map S_u back to the saturated area proportion (A_s) and then visualize it in the original HAND map. Based on this conceptual model, we developed the computer program and created a procedural module. The technical roadmap can be found in Figure 3.

2.3 **HSC-MCT module**

The $S_{u_{\text{Max}}}$ is an essential parameter in various hydrological models (e.g. HBV, Xinanjiang, GR4J), which determines the long-term partitioning of rainfall into infiltration and runoff. Gao et al., 2014a found that $S_{u_{\text{Max}}}$ represents the adaption of ecosystems to local climate. Ecosystems may design their $S_{u_{\text{Max}}}$ based on the precipitation pattern and its water demand. The storage is neither too small to avoid mortality in dry seasons, nor too large to consume excessive energy and nutrients. Based on this assumption, we can estimate the $S_{u_{\text{Max}}}$ without calibration, by the MCT method, from climatological and vegetation information. More specifically, the average annual plant water demand in the dry season (S_n) is determined by the water balance and the vegetation phenology, i.e. precipitation, runoff and seasonal NDVI. Subsequently, based on the annual S_n, the Gumbel distribution (Gumbel, 1935), frequently used for estimating hydrological extremes, was used to standardize the frequency of drought occurrence. S_{20y}, i.e. the root zone storage capacity required to overcome a drought once in 20 years, is used as the proxy for
268 S_{uMax} due to the assumption of a “cost” minimization strategy of plants as we mentioned above (Milly,
269 1994), and the fact that S_{uMax} has the best fit with S_{uMax} (Gao et al., 2014a).

270 Eventually, with the MCT approach to estimate S_{uMax} and the HSC curve to represent the root zone storage
271 capacity spatial distribution, the HSC-MCT runoff generation module is created, without free parameters.
272 It is worth noting that both the HSC-MCT and HSC modules are based on the HAND derived S_r-A_t relation,
273 and their distinction lays in the methods to obtain S_{uMax}. So far, the HBV power function module has 2 free
274 parameters (S_{uMax}, $β$). While the TOPMODEL and the HSC both have one free parameter (S_{uMax}). Ultimately
275 the HSC-MCT has no free parameter.

2.4 Interception, evaporation and routing modules

276 Except for the runoff generation module in the root zone reservoir (S_{ur}), we need to consider other
277 processes, including interception (S_i) before the S_{ur} module, evaporation from the S_{ur} and the response
278 routine (S_{fr} and S_{sn}) after runoff generation from S_{ur} (Figure 4). Precipitation is firstly intercepted by
279 vegetation canopies. In this study, the interception was estimated by a threshold parameter (S_{Max}), set to
280 2 mm (Gao et al., 2014a), below which all precipitation will be intercepted and evaporated (Equation 9)
281 (de Groen and Savenije, 2006). For the S_{ur} reservoir, we can either use the HBV beta-function (Equation
282 12), the runoff generation module of TOPMODEL (Equation 2.4) or the HSC module (Section 2.3) to
283 partition precipitation into generated runoff (R_s) and infiltration. The actual evaporation (E_s) from the soil
284 equals to the potential evaporation (E_p), if S_s/S_{Max} is above a threshold (C_e), where S_s is the soil moisture
285 and S_{Max} is the catchment averaged storage capacity. And E_s linearly reduces with S_u/S_{Max}, while S_u/S_{Max}
286 is below C_e (Equation 13). The E_p can be calculated by the Hargreaves equation (Hargreaves and Samani,
287 1985), with maximum and minimum daily temperature as input. The generated runoff (R_s) is further split
288 into two fluxes, including the flux to the fast response reservoir (R_f) and the flux to the slow response
289 reservoir (R_s), by a splitter (D) (Equation 14, 15). The delayed time from rainfall peak to the flood peak is
290 estimated by a convolution delay function, with a delay time of T_{lagf}. Subsequently, the fluxes into two
291 different response reservoirs (S_{fr} and S_{sn}) were released by two linear equations between discharge and
292 storage (Equation 19, 21), representing the fast response flow and the slow response flow mainly from
293 groundwater reservoir. The two discharges (Q_f and Q_s) generated the simulated streamflow (Q_{sim}). The
294 model parameters are shown in Table 1, while the equations are given in Table 2. More detailed
295 description of the model structure can be referred to Gao et al., 2014b and 2016. It is worth underlining
296 that the only difference among the benchmark HBV type, TOPMODEL type, the HSC and the HSC-MCT
models is their runoff generation modules. Eventually, there are 7 free parameters in HBV model, 6 in TOPMODEL and HSC model, and 5 in the HSC-MCT model.

2.5 Model evaluation, calibration, validation and models comparison

Two objective functions were used to evaluate model performance, since multi-objective evaluation is a more robust approach to quantifying model performance with different criteria than a single one. The Kling-Gupta efficiency (Gupta et al., 2009) (I_{KGE}) was used as the criteria to evaluate model performance and as an objective function for calibration. The equation is written as:

$$I_{\text{KGE}} = 1 - \sqrt{(r - 1)^2 + (\alpha - 1)^2 + (\varepsilon - 1)^2}$$

(7)

Where r is the linear correlation coefficient between simulation and observation; α ($\alpha = \sigma_m / \sigma_o$) is a measure of relative variability in the simulated and observed values, where σ_m is the standard deviation of simulated streamflow, and σ_o is the standard deviation of observed streamflow; ε is the ratio between the average value of simulated and observed data. And the I_{KGL} (I_{KGE} of the logarithmic flows) (Fenicia et al., 2007; Gao et al., 2014b) is used to evaluate the model performance on baseflow simulation. Since the response module, determined the baseflow simulation and I_{KGL}, is kept the same for all four models, thus only the I_{KGE} results are presented in the results.

A multi-objective parameter optimization algorithm (MOSCEM-UA) (Vrugt et al., 2003) was applied for the calibration. The parameter sets on the Pareto-frontier of the multi-objective optimization were assumed to be the behavioral parameter sets and can equally represent model performance. The averaged hydrograph obtained by all the behavioral parameter sets were regarded as the simulated result of that catchment for further studies. The number of complexes in MOSCEM-UA were set as the number of parameters (7 for HBV, 6 for TOPMODEL and the HSC model, and 5 for HSC-MCT model), and the number of initial samples was set to 210 and a total number of 50000 model iterations for all the catchment runs. For each catchment, the first half period of data was used for calibration, and the other half was used to do validation.

In module comparison, we defined three categories: if the difference of I_{KGE} of model A and model B in validation is less than 0.1, model A and B are regarded as “equally well”. If the I_{KGE} of model A is larger than model B in validation by 0.1 or more, model A is regarded as outperforming model B. If the I_{KGE} of model A is less than model B in validation by -0.1 or less, model B is regarded to outperform model A.
3 Dataset

3.1 The Bruntland Burn catchment

The 3.2 km² Bruntland Burn catchment (Figure 5), located in north-eastern Scotland, was used as a benchmark study to test the model's performance based on a rich data base of hydrological measurements. The Bruntland Burn is typical of many upland catchments in North West Europe (e.g. Birkel et al., 2010), namely a combination of steep and rolling hillslopes and over-widened valley bottoms due to the glacial legacy of this region. The valley bottom areas are covered by deep (in parts > 30m) glacial drift deposits (e.g. till) containing a large amount of stored water superimposed on a relatively impermeable granitic solid geology (Soulsby et al., 2016). Peat soils developed (> 1m deep) in these valley bottom areas, which remain saturated throughout most of the year with a dominant near-surface runoff generation mechanism delivering runoff quickly via micro-topographical flow pathways connected to the stream network (Soulsby et al., 2015). Brown rankers, peaty rankers and peat soils are responsible for a flashy hydrological regime driven by saturation excess overland flow, while humus iron podzols on the hillslopes do not favor near-surface saturation but rather facilitate groundwater recharge through vertical water movement (Tetzlaff et al., 2014). Land-use is dominated by heather moorland, with smaller areas of rough grazing and forestry on the lower hillslopes. Its annual precipitation is 1059 mm, with the summer months (May-August) generally being the driest (Ali et al., 2013). Snow makes up less than 10% of annual precipitation and melts rapidly below 500m. The evapotranspiration is around 400 mm per year and annual discharge around 659 mm.

The LiDAR-derived DEM map with 2m resolution shows elevation ranging from 250m to 539m (Figure 5). There are 7 saturation area maps (Figure 6) (May 2, July 2, August 4, September 3, October 1, November 26, in 2008, and January 21, in 2009), measured directly by field mapping (Ali et al., 2013), and a global positioning system (GPS) was used to delineate the boundary of saturation areas. These saturation area maps revealed a dynamic behavior of expanding and contracting areas connected to the stream network that were used as a benchmark test for the HSC module.

3.2 MOPEX dataset

The MOPEX dataset was collected for a hydrological model parameter estimation experiment (Duan et al., 2006; Schaake et al., 2006), containing 438 catchments in the CONUS (Contiguous United States). The dataset contains the daily precipitation, daily maximum and minimum air temperature, and daily streamflow. The longest time series range from 1948 to 2003. 323 catchments were used in this study,
with areas between 67 and 10,329 km2, and excluding the catchments with data records <30 years, impacted by snowmelt or with extreme arid climate (aridity index $E_T/P > 2$). The daily streamflow was used to calibrate the free parameters, and validate the models. The Digital Elevation Model (DEM) of the CONUS in 90m resolution was downloaded from the Earth Explorer of United States Geological Survey (USGS, http://earthexplorer.usgs.gov/).

4 Results of the Bruntland Burn

4.1 Topography analysis

The TWI map of the BB (Figure 5) was generated from its DEM. Overall, the TWI map, ranging from -0.4 to 23.4, mainly differentiates the valley bottom areas with the highest TWI values from the steeper slopes. This is probably caused by the fine resolution of the DEM map in 2 m, since previous research found the sensitivity of TWI to DEM resolution (Sørensen and Seibert, 2007). From the TWI map, the frequency distribution function and the accumulative frequency distribution function can be derived (Figure 7), with one unit of TWI as interval.

The generated HAND map, derived also from the DEM, is shown in Figure 5, with HAND values ranging from 0m to 234m. Since HAND is sensitive to the definition of the perennial channel, which is highly impacted by the stream initiation threshold area (Montgomery and Dietrich, 1989; Gharari et al., 2011; Hooshyar et al., 2016). The start area was chosen as 40ha to maintain a close correspondence with observed stream network. Based on the HAND map, we can derive the S_u-A_u curve (Figure 7) by analyzing the HAND map with the method in Section 2.3.

4.2 Model performance

The observed and simulated hydrographs of three models (HBV, TOPMODEL, and HSC) in 2008 are shown in Figure 8. We found all the three models can perform well to reproduce the observed hydrograph. The I_{KGE} of the three models are all around 0.66, which is largely in line with other studies from the BB (Birkel et al., 2010; 2014). Since the measured rainfall-runoff time series only last from 2008 to 2014, which is too short to estimate the S_{20y} (proxy for S_u) by MCT approach (which needs long-term hydro-meteorological observation data), the HSC-MCT model was not applied to the catchment.

The normalized relative soil moisture of the three model simulations are presented in Figure 8. Their temporal fluctuation patterns are comparable. Nevertheless, the simulated soil moisture by TOPMODEL has a larger variation, compared with HBV and HSC (Figure 8).
Figure 7 shows the calibrated power curve from HBV (beta=0.98) with the Su-As curve obtained from the HSC module. We found the two curves are largely comparable, especially while the relative soil moisture is low. This result demonstrates that for the BB with glacial drift deposits and combined terrain of steep and rolling hillslopes and over-widened valley bottoms, the HBV power curve can essentially be derived from the Su-As curve of HSC module merely by topographic information without calibration.

4.3 Contributing area simulation

The observed saturation area and the simulated contributing area from both TOPMODEL and the HSC are shown in Figure 6, 8, 9. We found although both modules overestimated the contributing areas, they can capture the temporal variation. For example, the smallest saturated area both observed and simulated occurred on July-02-2008, and the largest saturated area both occurred on January-21-2009. Comparing the estimated contributing area of TOPMODEL with the HSC module, we found the results of the HSC correlates better ($R^2=0.60$) with the observed saturated areas than TOPMODEL ($R^2=0.50$) (Figure 9). For spatial patterns, the results of the HSC module are also more closely comparable with the observed saturated areas than TOPMODEL (Figure 6). Based on these results benchmarking the HSC module with observed saturated area maps, we proceeded to test HSC for a wide range of climatically and geomorphologically different catchments across the US.

5 Results from the MOPEX catchments

5.1 Topography analysis of the Contiguous US and 323 MOPEX catchments

To delineate the TWI map for the CONUS, the depressions of the DEM were firstly filled with a threshold height of 100m (recommended by Esri). The slope map, i.e. the steepest local slope, was generated by the filled DEM, and the flow direction map was also derived from the filled DEM using the D8 algorithm (O’Callaghan and Mark, 1984; Jenson and Domingue, 1988). Subsequently, the flow accumulation map could be generated from the flow direction map. The accumulated upslope area (A), obtained from the flow accumulation map, was then divided by an estimate of the contour length (L), which is related to the flow direction map, to provide the local upslope area draining through a certain point per unit contour length ($a = A/L$). With the definition of TWI as $\ln(a/tan \beta)$, the TWI map of the CONUS is produced (Figure S1). From the TWI map of the CONUS, we clipped the TWI maps for the 323 MOPEX catchments with their catchment boundaries. And then the TWI frequency distribution and the accumulated frequency distribution of the 323 MOPEX catchments (Figure S2), with one unit of TWI as interval, were derived based on the 323 TWI maps.
The HAND map (Figure 10) was also generated from the filled DEM, with the input of the flow direction and flow accumulation maps. Specifically, the perennial river network was obtained, based on the flow accumulation map, by setting the stream initiation area threshold of 500 grid cells (4.05 km²), which fills in the range of stream initiation thresholds reported by others (e.g., Colombo et al., 2007; Moussa, 2008, 2009). In the end, HAND was then calculated from the elevation of each raster cell above nearest grid cell flagged as stream cell following the flow direction (Gharari et al., 2011).

In Figure 10, it is shown that the regions with large HAND values are located in Rocky Mountains and Appalachian Mountains, while the Great Plains has smaller HAND values. Interestingly, the Great Basin, especially in the Salt Lake Desert, has small HAND values, illustrating its low elevation above the nearest drainage, although their elevations above sea level are high. From the CONUS HAND map, we clipped the HAND maps for the 323 MOPEX catchments with their catchment boundaries. We then plot their HAND-area curves, following the procedures of II-IV in Section 2.2. Figure 11a shows the normalized HAND profiles of the 323 catchments.

Based on the HAND profiles and the Step V in Section 2.2, we derived the normalized storage capacity distribution for all catchments (Figure 11b). Subsequently, the root zone moisture and saturated area relationship \((A_r-S_r)\) can be plotted by the method in Step VI of Section 2.2. Lastly, reversing the curve of \(A_r-S_r\) to \(S_r-A_r\) relation (Figure 11c), the latter one can be implemented to simulate runoff generation by soil moisture. Figure 11c interestingly shows that in some catchments, there is almost no threshold behavior between rainfall and runoff generation, where the catchments are covered by large areas with low HAND values and limited storage capacity. Therefore, when rainfall occurs, wetlands response quickly and generate runoff without a precipitation–discharge threshold relationship characteristic of areas with higher moisture deficits. This is similar to the idea of FLEX-Topo where the storage capacity is distinguished between wetlands and hillslopes, and on wetlands, with low storage capacity, where runoff response to rainfall is almost instantaneous.

5.2 Model performance

Overall, the performance of the two benchmark models, i.e. HBV and TOPMODEL, for the MOPEX data (Figure 12) is comparable with the previous model comparison experiments, conducted with four rainfall-runoff models and four land surface parameterization schemes (Duan et al., 2006; Ye et al., 2014). The median value of \(l_{KGE}\) of the HBV type model is 0.61 for calibration in the 323 catchments (Figure 12), and averaged \(l_{KGE}\) in calibration is 0.62. In validation, the median and averaged values of \(l_{KGE}\) are kept the same as calibration. The comparable performance of models in calibration and validation demonstrates the...
The robustness of benchmark models and the parameter optimization algorithm (i.e. MOSCEM-UA). The TOPMODEL improves the median value of I_{KGE} from 0.61 (HBV) to 0.67 in calibration, and from 0.61 (HBV) to 0.67 in validation. But the averaged values of I_{KGE} for TOPMODEL are slightly decreased from 0.62 (HBV) to 0.61 in both calibration and validation. The HSC module, by involving the HAND topographic information without calibrating the β parameter, improves the median value of I_{KGE} to 0.68 for calibration and 0.67 for validation. The averaged values of I_{KGE} in both calibration and validation are also increased to 0.65, comparing with HBV (0.62) and TOPMODEL (0.61). Furthermore, Figure 12 demonstrates that, comparing with the benchmark HBV and TOPMODEL, not only the median and averaged values were improved by the HSC module, but also the 25th and 75th percentiles and the lower whisker end, all have been dramatically improved. These results indicate the HSC module improved model performance to reproduce hydrograph, and simultaneously maintaining model robustness and consistency.

Additionally, for the median I_{KGE} value, the HSC-MCT leads to an improvement from 0.61 (HBV) to 0.65 in calibration, and from 0.61 (HBV) to 0.64 in validation, but not as well performed as TOPMODEL (0.67 for calibration and validation). For the averaged I_{KGE} values, they were slightly reduced from 0.62 (HBV) and 0.61 (TOPMODEL) to 0.59 for calibration and validation. Although the HSC-MCT did not perform as well as the HSC module, considering there is no free parameters to calibrate, the median I_{KGE} value of 0.64 (HBV is 0.61) and averaged I_{KGE} of 0.59 (TOPMODEL is 0.61) are quite acceptable. In addition, the 25th and 75th percentiles and the lower whisker end of the HSC-MCT model are all improved compared to the HBV model. Moreover, the largely comparable results between the HSC and the HSC-MCT modules demonstrate the feasibility of the MCT method to obtain the S_{Max} parameter and the potential for HSC-MCT to be implemented in prediction of ungaged basins (PUB, cf. Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013). Since the response routines determining the baseflow simulation of the four models are exactly the same, the results of I_{KGE} as an indicator to evaluate baseflow are not presented.

Figure 13 shows the spatial comparisons of the HSC and HSC-MCT models with the two benchmark models. We found that the HSC performs “equally well” as HBV (the difference of I_{KGE} in validation ranges -0.1 to 0.1) in 88% catchments, and in the remaining 12% of the catchments the HSC outperforms HBV (the improvement of I_{KGE} in validation is larger than 0.1). In not a single catchment did the calibrated HBV outperform the HSC. From the spatial comparison, we found that the catchments, where the HSC model performed better are mostly located in the Great Plains, with modest sloping (4.0 degree), while the other catchments have average slope of 8.1 degree. Comparing the HSC model with TOPMODEL, we found in 91% of the catchments that the two models have approximately equal performance. In 8% of the
catchments, the HSC model outperformed TOPMODEL. Only in 1% of the catchments (two in Appalachian
Mountain and one in the Rocky Mountain in California), TOPMODEL performed better. From spatial
analysis, we found the HSC outperformed catchments have flat terrain (2.3 degree) with moderate
averaged HAND value (26m), while the TOPMODEL outperformed catchments have steep hillslope (19
degree) with large averaged HAND value (154m).

Without calibration of S_{uMax}, as expected, the performance of HSC-MCT module slightly deteriorates
(Figure 12). In comparison with HBV, the outperformance reduced from 12% (HSC) to 4% (HSC-MCT), the
approximately equal-well simulated catchments dropped from 88% to 79%, and the inferior performance
increased from 0% to 17%. Also, in comparison with TOPMODEL, the better performance dropped from
8% (HSC model) to 7% (HSC-MCT model), the approximately equal catchments reduced from 91% to 72%,
and the inferior performance increased from 1% to 21%. The inferiority of the HSC-MCT model is probably
caused by the uncertainty of the MCT method for different ecosystems which have different survival
strategies and use different return periods to bridge critical drought periods. By using ecosystem
dependent return periods, this problem could be reduced (Wang-Erlandsson et al., 2016).

To further explore the reason for the better performance of the HSC approach, we selected the 08171000
catchment in Texas (Figure 13), in which both the HSC module and the HSC-MCT module outperformed
the two benchmark modules to reproduce the observed hydrograph (Figure S3). The HBV model
dramatically underestimated the peak flows, with I_{KGE} as 0.54, while TOPMODEL significantly
overestimated the peak flows, with I_{KGE} as 0.30. The HSC-MCT model improved the I_{KGE} to 0.71, and the
HSC model further enhanced I_{KGE} to 0.74.

Since the modules of interception, evaporation and routing are identical for the four models, the runoff
generation modules are the key to understand the difference in model performance. Figure S4 shows the
HBV β curve and the S_{u}-A_{c} curve of the HSC model, as well the TWI frequency distribution. We found that
with a given $S_{\text{u}}/S_{\text{uMax}}$, the HBV β function generates less contributing area than the HSC model, which
explains the underestimation of the HBV model. In contrast, TOPMODEL has a sharp and steep
accumulated TWI frequency curve. In particular, the region with TWI=8 accounts for 40% of the catchment
area, and over 95% of the catchment areas are within the TWI ranging from 6 to 12. This indicates that
even with low soil moisture content ($S_{\text{u}}/S_{\text{uMax}}$), the contributing area by TOPMODEL is relatively large,
leading to the sharply increased peak flows for all rainfall events.
6 Discussion

6.1 Rainfall-runoff processes and topography

In hillslope and catchment hydrology, the partitioning of precipitation into runoff and evaporation is a fundamental function in virtually all hydrological models. Bucket-type models (e.g. HBV and Xinanjiang), as one of the most widely used group of conceptual models, typically adopt two parameters to determine runoff generation. One is the root zone storage capacity \(S_{\text{MA}} \) and the other is the shape parameter (i.e. \(\beta \)) determining the relation between root zone moisture and runoff generation. In long-term water balance studies, climate plays a key role in determining the storage capacity and the partition between evaporation and runoff (Budyko, 1971; Wang and Tang, 2014; Gao et al., 2014a). But for specific events, the key question is how antecedent soil moisture impacts runoff generation. Field studies support that in many mildly sloping catchments, SEF is the dominant runoff generation mechanism (Sklash and Farvolden, 1979; Burt and McDonnell, 2015). Therefore, it is essential to determine the temporal variability of the saturated area (equal to the contributing area and the runoff coefficient of a specific rainfall-runoff event), to calculate runoff generation. Linking the runoff contributing area to topography is not a new insight in rainfall-runoff modelling. TOPMODEL is an elegant pioneering model allowing us to understand the interaction between topography and connectivity. In this study, the HSC module uses a relatively new topographic index (i.e. HAND) to identify hydrological similarity.

We applied a novel approach to derive the relationship between soil moisture storage and the saturated area from HAND. The areas with relatively low HAND values are saturated earlier than areas with higher HAND values, due to the larger storage capacity in high HAND locations. The outperformance of the HSC model over the benchmark HBV and TOPMODEL in modestly sloping catchments indicates that the HSC module has a higher realism than the calibrated beta-function of the HBV model and the TWI of TOPMODEL in these regions. Very interestingly, Fan et al., (2017) presented a global synthesis of 2,200 root observations of >1000 species, and revealed the systematic variation of rooting depth along HAND (Fig.1, in Fan et al., 2017). Since rooting depth can be translated to root zone storage capacity through combination with soil plant-available water (Wang-Erlandsson et al., 2016). This large sample dataset, from ecological perspective, provides a strong support for the assumption of the HSC model on modest slopes, i.e. the increase of root zone storage capacity with HAND. More interestingly, on excessively drained uplands, rooting depth does not follow the same role, with shallow depth and limited to rain infiltration (Fig.1, in Fan et al., 2017). This could explain the inferior performance of HSC model to TOPMODEL in three MOPEX catchments (averaged HAND is 154 m) with excessively drained uplands,
where Hortonian overland flow is likely the dominant mechanism, and the HSC assumption likely does not work well. The FLEX-Topo model (Savenije, 2010) also uses HAND information as a topographic index to distinguish between landscape-related runoff processes, and has both similarity and differences with the HSC model. The results of the HSC model illustrate that the riparian areas are more prone to be saturated, which is consistent with the concept of the FLEX-Topo model. Another important similarity of the two models is their parallel model structure. From our perspective, the parallel model structure is closer to reality. Since before saturation, rainfall is firstly infiltrated into local storage, and water moves vertically; only after a certain level of saturation, water starts to move laterally. But in both models it is assumed that the upslope area has larger storage capacity, therefore the upper land generates runoff later than the lower land. In other words, in most cases, the local storage is saturated due to the local rainfall, instead of flow from upslope. Therefore, the local storage is an essential feature, to estimate the saturated area and runoff generation, rather than the water coming from uphill.

The most obvious difference between the HSC and the FLEX-Topo models is the approach towards discretization of a catchment. The FLEX-Topo model classifies a catchment into various landscapes, e.g. wetlands, hillslopes and plateau. This discretization method requires threshold values to classify landscapes, i.e. threshold values of HAND and slope, which leads to fixed and time-independent proportions of landscapes. The HSC model does not require landscape classification, which reduced the subjectivity in discretization and restricted the model complexity, as well as simultaneously allowing the fluctuation of saturated areas (termed as wetlands in FLEX-Topo).

6.2 Catchment heterogeneity and simple models
Catchments exhibit a wide array of heterogeneity and complexity with spatial and temporal variations of landscape characteristics and climate inputs. For example, the Darcy-Richards equation approach is often consistent with point-scale measurements of matrix flow, but not for preferential flow caused by roots, soil fauna and even cracks and fissures (Beven and Germann, 1982; Zehe and Fluehler, 2001; Weiler and McDonnell, 2007). As a result, field experimentalists continue to characterize and catalogue a variety of runoff processes, and hydrological and land surface modelers are developing more and more complicated models to involve the increasingly detailed processes (McDonnell et al., 2007). However, there is still no compelling evidence to support the outperformance of sophisticated “physically-based” models in terms of higher equifinality and uncertainty than the simple lumped or semi-distributed conceptual models in rainfall-runoff simulation (Beven, 1989; Orth et al., 2015).
But evidence is mounting that a catchment is not a random assemblage of different heterogeneous parts (Sivapalan, 2009; Troch et al., 2013; Zehe et al., 2013), and conceptualising heterogeneities does not require complex laws (Chase, 1992; Passalacqua et al., 2015). Asking questions of “why” rather than “what” likely leads to more useful insights and a new way forward (McDonnell et al., 2007). Catchment is a geomorphological and even an ecological system whose parts are related to each other probably due to catchment self-organization and evolution (Sivapalan and Blöschl, 2015; Savenije and Hrachowitz, 2017).

This encourages the hope that simplified concepts may be found adequate to describe and model the operation of the basin runoff generation process. It is clear that topography, with fractal characteristic (Rodriguez-Iturbe and Rinaldo, 1997), is often the dominant driver of runoff, as well as being a good integrated indicator for vegetation cover (Gao et al., 2014b), rooting depth (Fan et al., 2017), root zone evaporation and transpiration deficits (Maxwell and Condon, 2016), soil properties (Seibert et al., 2007), and even geology (Rempe and Dietrich, 2014; Gomes, 2016). Therefore, we argue that increasingly detailed topographic information is an excellent integrated indicator allowing modelers to continue systematically represent heterogeneities and simultaneously reduce model complexity. The model structure and parametrization of both HSC and TOPMODEL are simple, but not over simplified, as they capture probably the most dominant factor controlling runoff generation, i.e. the spatial heterogeneity of storage capacity. Hence, this study also sheds light on the possibility of moving beyond heterogeneity and process complexity (McDonnell et al., 2007), to simplify them into a succinct and a priori curve by taking advantage of catchment self-organization probably caused by co-evolution or the principle of maximum entropy production (Kleidon and Lorenz, 2004).

6.3 Implications and limitation

The calibration-free HSC-MCT runoff generation model may enhance our ability to predict runoff in ungauged basins (Sivapalan et al., 2003; Blöschl et al., 2013; Hrachowitz et al., 2013). Hydrological models still depend largely on observational data to feed statistical analysis and calibrate the free parameters. This is probably not a major issue in the developed world, with abundant of comprehensive measurements in many places, but for the developing world it requires prediction with sparse data and fragmentary knowledge. Topographic information with high spatial resolution is freely available globally, allowing us to implement the HSC model in global scale studies. In addition, thanks to the recent development, testing, and validation of remote sensing evaporation products in large spatial scale (e.g. Anderson et al., 2011; Hu and Jia, 2015), the S_{uMax} estimation has become possible without in situ hydro-
meteorological measurements (Wang-Erlandsson et al., 2016). These widely-accessible datasets make the global-scale implementation of HSC-MCT module promising.

Finally, we should not ignore the limitations of this model, although it has better performance and modelling consistency. Firstly, the threshold area for the initiating a stream was set as a constant value for the entire CONUS, but the variation of this value in different climate, geology and landscape classes (Montgomery and Dietrich, 1989; Helmlinger et al., 1993; Colombo et al., 2007; Moussa, 2008) needs to be future investigated. Secondly, the discrepancy between observed and simulated saturation area needs to be further investigated, by utilizing more advanced field measurement and simultaneously refining the model assumption. The overestimation of the HSC model is possibly because two runoff generation mechanisms – SOF and the SSF occur at the same time. However, the saturated area observed by the "squishy boot" method (Ali et al., 2013), probably only distinguished the areas where SOF occurred. Subsurface stormflow, also contributes to runoff but without surface runoff, cannot be observed by the "squishy boot" method. Thus, this mismatch between simulation and observation probably leads to this saturated area overestimation. Another interpretation might be the different definition of “saturation”. The observed saturated areas are places where 100% of soil pore volume is filled by water. But the modelled saturation areas are located where soil moisture is above field capacity, and not necessarily 100% filled with water, which probably also results in overestimation of saturated areas.

7 Summary and conclusions

In this study, we developed a simple, calibration-free hydrological module based on HAND information, which is an excellent indicator of hydrologic similarity and a physically-based index linking terrain with hydraulic gradient at the hillslope and catchment scales. We assumed that the local storage capacity is closely linked to HAND. Based on this assumption and the HAND spatial distribution pattern, the soil moisture (\(S_u\)) - saturated area (\(A_s\)) relation for each catchment was derived, which was used to estimate the \(A_s\) of specific rainfall event based on continuous calculation of \(S_u\). Subsequently, based on the \(S_u-A_s\) relation, the HAND-based Storage Capacity curve (HSC) module was developed. Then, applying the mass curve technique (MCT) approach (Gao et al., 2014a), we estimated the root zone storage capacity (\(S_{uMax}\)) from observed hydro-climatological and vegetation data, and coupled it with HSC to create the calibration-free HSC-MCT module, in which the \(S_{uMax}\) was obtained by MCT, and the \(S_u-A_s\) relation was obtained by HSC. The HBV beta-function and TWI-based TOPMODEL were used as two benchmark modules to test the performance of HSC and HSC-MCT on both hydrograph simulation and ability to reproduce the contributing area, which was measured for different hydrometeorological conditions in the
Bruntland Burn catchment in Scotland. Subsequently, 323 MOPEX catchments in the US were used as a large sample hydrological study to further validate the effectiveness of our proposed runoff generation modules.

In the BB exploratory study, we found that the HSC, HBV and TOPMODEL performed comparably well to reproduce the observed hydrograph. Interestingly, the S-A curves of HSC and HBV are largely comparable, which illustrates the HSC curve can be used as a proxy for the HBV beta-function. Comparing the estimated contributing area of TOPMODEL with the HSC module, we found that the results of the HSC module correlate better ($R^2=0.60$) with the observed saturated areas compared to TOPMODEL ($R^2=0.50$). This likely indicates that HAND maybe a better indicator to distinguish hydrological similarity than TWI.

For the 323 MOPEX catchments, HSC improved the averaged validation value of I_{KGE} from 0.62 (HBV) and 0.61 (TOPMODEL) to 0.65. In 12% of the MOPEX catchments, the HSC module outperforms HBV, and in not a single catchment did the calibrated HBV outperform the HSC. Comparing with TOPMODEL, the HSC outperformed in 8% of the catchments, and in only 1% of catchments TOPMODEL has a better performance. Not surprisingly, the I_{KGE} of HSC-MCT model was slightly reduced to 0.59, due to the non-calibrated S_{Max}, but still comparably well performed as HBV (0.62) and TOPMODEL (0.61). This illustrates the robustness of both the HSC approach to derive the spatial distribution of the root zone storage capacity (β) and the efficiency of the MCT method to estimate the root zone storage capacity (S_{Max}).

Moreover, the new module allows us to map out the saturated area, which has potential capability to be used for broader hydrological, ecological, climatological, geomorphological, and biogeochemical studies.

Acknowledgement:

This study was supported by National Key R&D Program of China (2017YFE0100700).

Author contributions:

H.G. and H.H.G.S. designed research; H.G. performed research; C.B., C.S., D.T and H.G. provided data, among which the dynamics of the saturation areas data in the BB was provided by C.B. C.S., and D.T.; H.G. analysed data; C.B. was involved in the interpretation of some of the modelling work in the BB; H.G. M.H, and H.H.G.S. wrote the paper; CS and DT extensively edited the paper, and provided substantial comments and constructive suggestions for scientific clarification.
References:

Budyko MI. 1971. Climate and life.

De Groen MM, Savenije HHG. 2006. A monthly interception equation based on the statistical characteristics of daily rainfall. Water Resources Research 42 (12): n/a–n/a DOI: 10.1029/2006WR005013

Kirchner JW. 2006. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research 42 (3): n/a–n/a DOI: 10.1029/2005WR004362

Neuweiler I, Helmig R. Debates—Hypothesis testing in hydrology: A subsurface perspective. Water Resources Research: n/a–n/a DOI: 10.1002/2016WR020047

O’Callaghan JF, Mark DM. 1984. The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing 28 (3): 323–344

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
<th>Pages/Volume</th>
<th>DOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geoderma 141 (1-2): 139–148 DOI: 10.1016/j.geoderma.2007.05.013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrochemical heterogeneity in an upland catchment: further characterisation of the spatial, temporal and depth variations in soils, streams and groundwaters of the Plynlimon forested catchment, Wales.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrology and Earth System Sciences 9 (6): 621–644</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sivapalan M. 2009. The secret to ‘doing better hydrological science’: change the question! Hydrological Processes 23 (9): 1391–1396 DOI: 10.1002/hyp.7242</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zehe E., Fluehler H. 2001. Preferential transport of Isoproturon at a plot scale and a field scale tile-drained site. J. Hydrol. 247, 100–115

Table 1. The parameters of the models, and their prior ranges for calibration. (*S_{uMax} is a parameter in HBV, TOPMODEL and the HSC model, but HSC-MCT model does not have S_{uMax} as a free parameter; ** β is a parameter in HBV model, but not in TOPMODEL, HSC and HSC-MCT models)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Prior range for calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{Max} (mm)</td>
<td>Maximum interception capacity</td>
<td>2</td>
</tr>
<tr>
<td>S_{uMax} (mm) *</td>
<td>The root zone storage capacity</td>
<td>(10, 1000)</td>
</tr>
<tr>
<td>β (-)**</td>
<td>The shape of the storage capacity curve</td>
<td>(0.01, 5)</td>
</tr>
<tr>
<td>C_e (-)</td>
<td>Soil moisture threshold for reduction of evaporation</td>
<td>(0.1, 1)</td>
</tr>
<tr>
<td>D (-)</td>
<td>Splitter to fast and slow response reservoirs</td>
<td>(0, 1)</td>
</tr>
<tr>
<td>T_{lag} (d)</td>
<td>Lag time from rainfall to peak flow</td>
<td>(0, 10)</td>
</tr>
<tr>
<td>K_f (d)</td>
<td>The fast recession coefficient</td>
<td>(1, 20)</td>
</tr>
<tr>
<td>K_s (d)</td>
<td>The slow recession coefficient</td>
<td>(20, 400)</td>
</tr>
</tbody>
</table>

Table 2. The water balance and constitutive equations used in models. (Function (15)** is used in the HBV model, but not used in the TOPMODEL, HSC and HSC-MCT models)
Interception reservoir
\[
\frac{dS_i}{dt} = P - E_i - P_e \quad (8)
\]

\[E_i = \begin{cases}
E_p; & S_i > 0 \\
0; & S_i = 0
\end{cases} \quad (9) \]

\[P_e = \begin{cases}
0; & S_i < S_{s\text{Max}} \\
P_e; & S_i = S_{s\text{Max}}
\end{cases} \quad (10) \]

Unsaturated reservoir
\[
\frac{dS_u}{dt} = P_e - E_u - R_u \quad (11)
\]

\[R_u = \left(\frac{S_u}{S_{u\text{Max}}} \right)^\beta \quad (12) \]

\[E_u = \frac{S_u}{E_p - E_i} \quad (13) \]

Splitter and Lag function
\[R_f = R_c D \quad (17); \quad R_s = R_c (1 - D) \quad (14) \]

\[R_f (t) = \sum_{i=1}^{T_{lag}} c_f (i) \cdot R_f (t - i + 1) \quad (15) \]

\[c_f (i) = i \cdot \sum_{u=1}^{T_{lag}} u \quad (16) \]

Fast reservoir
\[
\frac{dS_f}{dt} = R_f - Q_f \quad (17)
\]

Slow reservoir
\[
\frac{dS_s}{dt} = R_s - Q_s \quad (19)
\]

\[Q_f = \frac{S_f}{K_f} \quad (18) \]

\[Q_s = \frac{S_s}{K_s} \quad (20) \]
Figure 1. The perceptual model of the HAND-based Storage Capacity curve (HSC) model. a) shows the representative hillslope profile in nature, and the saturated area, unsaturated zone and saturated zone; b) shows the relationship between HAND bands and their corresponded area fraction; c) shows the relationship between storage capacity-area fraction-soil moisture-saturated area, based on the assumption that storage capacity linearly increases with HAND values.
Figure 2. The conceptual model of the HSC model. a), b) and c) illustrate the relationship between soil moisture (S_u) and saturated area (A_s) in different soil moisture conditions. In d), 20 different S_u-A_s conditions are plotted, which allow us to estimate A_s from S_u.

Figure 3. The procedures estimating runoff generation by the HSC model and its two hypotheses.
Figure 4. Model structure and free parameters, involving four runoff generation models (HBV-type, TOPMODEL, HSC, and HSC-MCT). HBV-type has S_{uMax} and beta two free parameters; TOPMODEL and HSC models have S_{uMax} as one free parameter; and HSC-MCT model does not have free parameter. In order to simplify calibration process and make fair comparison, the interception storage capacity (S_{iMax}) was fixed as 2mm.
Figure 5. (a) Study site location of the Bruntland Burn catchment within Scotland; (b) digital elevation model (DEM) of the Bruntland Burn catchment; (c) the topographic wetness index map of the Bruntland Burn catchment; (d) the height above the nearest drainage (HAND) map of the Bruntland Burn catchment.
Figure 6. The measured saturated areas and the simulated contributing areas by TOPMODEL and HSC models.
Figure 7. The curves of the beta function of HBV model, and the Su-As curve generated by HSC model (the left figure). The frequency and accumulated frequency of the TWI in the Bruntland Burn catchment (the right figure).
Figure 8. The observed hydrograph (Qo, black line) of the Bruntland Burn catchment in 2008. And the simulated hydrographs (Qm) by HBV model (blue line), TOPMODEL (green dash line), HSC model (red dash line). And the comparison of the simulated relative soil moistures, i.e. HBV (blue line), TOPMODEL (green line), HSC (red line). And the observed saturated area of 7 days (black dots), and the correspondent simulated contributing area by TOPMODEL (green dots) and by HSC model (red dots).

Figure 9. The comparison of the observed saturated area and simulated contributing areas by TOPMODEL and HSC models.
Figure 10. The Height Above the Nearest Drainage (HAND) map of the CONUS.

Figure 11. a) The profiles of the normalized HAND of the 323 MOPEX catchments; b) the relations between area fraction and the normalized storage capacity profile of the 323 MOPEX catchments; c) the S_r-A_r curves of the HSC model which can be applied to estimate runoff generation from relative soil moisture for the 323 MOPEX catchment.
Figure 12. The comparison between the HBV, the TOPMODEL, the HSC, and the HSC-MCT models.

Figure 13. Performance comparison of the HSC and HSC-MCT models compared to two benchmarks models: HBV and TOPMODEL, for the 323 MOPEX catchments.