A new method for determining the single threshold temperature of precipitation phase separation__A new method to separate precipitation phases

Yulian Liua,b Guoyu Rena,c Xiubao Suna,c Xiufen Lid,e Hengyuan Kangf

a Department of Atmospheric Science, School of Environmental Science, China University of Geosciences, Wuhan 430074, China;
b Heilongjiang Climate Center, Harbin 150030, China;
c Laboratory for Climate Studies, National Climate Center, CMA, Beijing100081, China;
d Innovation and Opening laboratory of Regional Eco-Meteorology in Northeast, China Meteorological Administration
e Heilongjiang Provincial Institute of Meteorological Sciences, Harbin 150030, China.
f Harbin Meteorological Bureau, Harbin 150028, China.

Corresponding author: G. Ren (guoyoo@cma.gov.cn)

Submitted to hydrology and earth system sciences for possible publication
Abstract

Separating the solid precipitation from liquid precipitation in an existing historical precipitation observation data series is a key problem in the monitoring and study of climate anomaly and long-term change of extreme precipitation events in different phases. In this study, based on the comprehensive analysis of the historical daily air temperature, precipitation data, and visual observations of precipitation phase weather phenomenon records in the northern areas of Mainland China (north of 30°N), this paper proposes a snowday-direct-definition-method to determine the threshold temperature of rainfall and snowfall in historical precipitation data for a complex and diverse geographical and climatic region were determined. A statistical model of separating solid precipitation from liquid precipitation was established, and a method of separating solid precipitation from liquid precipitation was proposed. The main conclusions include: (1) in northern China, the actual threshold temperature range of the daily mean temperature of rain and snow determined based on weather phenomenon records was between -1.2°C to -6.3°C, with a difference of 7.5°C among areas, and a mean threshold value of 2.8°C for the whole region. The actual
threshold—temperature in the northern Tibetan Plateau was the highest (generally higher than 4°C). The low threshold temperature values appeared in eastern Northeast China, North China, and northern Xinjiang Autonomous Region, which were less than 2°C. (2) The actual—threshold temperature decreased with increase in longitude east of 105°E, but meanwhile, it was more dispersed in the areas west of 105°E. The actual—threshold temperature was generally higher and more variable in the low—latitude areas, and while it was lower and more concentrated in the high—latitude areas. The threshold temperature was lower in the low—altitude areas and higher in the high—altitude areas, and it generally increased with altitude. (3) There was a negative correlation between the actual—threshold temperature and the annual precipitation. The actual—threshold temperature was higher in the areas with less precipitation, and lower in the areas with more precipitation. The actual—threshold temperature was also negatively correlated with the annual average relative humidity, and was generally low in humid areas with relatively large humidity and vice versa. (4) The multivariate regression fitting model developed in this paper based on latitude, altitude, and annual precipitation was able to simulate the actual—threshold temperature of the precipitation phase in northern China well. According to the calculated threshold temperature based on the model has a smaller—the relative error deviation for of snow days and snowfall are smaller, and the stations with less than 10% of relative error deviation reached 95.1% and 90.7%.
respectively. The results of this study can therefore be applied for the separation of solid and liquid precipitation events in the areas without sufficient weather phenomenon records or metadata.

Key words: Northern China; Precipitation; Phase; Snowfall, Rainfall; Separation; Statistical model; Simulation; Regional differences

1. Introduction

Precipitation is an important parameter used to characterize climate characteristics and climate change, and it is one of the key components of the Earth’s water and energy cycles (Loth et al., 1993). The influence of different phases of precipitation on the surface water and energy cycles is enormous (Vavrus, 2007; Wu et al., 2009), as more than 50% of the global meteorological disasters are closely related to different phases of abnormal precipitation, including extreme intense rainfall, heavy snowfall or blizzards, freezing rain and droughts (WMO, 2013; Wang et al., 2005). Under the similar same precipitation amount condition, the effect of different phases of precipitation on the Earth’s surface system and the social and
economic system is clearly different, thus it is important to distinguish and understand
the characteristics and anomalies of snowfall or sleetmixed-phase events and their
causes. In addition, in monitoring and studying the long-term changes in
extreme precipitation events on sub-continental to global scales, it is also necessary to
distinguish rainfall and snowfall events from historical precipitation data.

To date, many studies have been published on the characteristics and
multi-decadal variation of snowfall in China (e.g. Jiang et al., 2003; Yang et al., 2005;
Qin et al., 2006; Liu et al., 2012, 2013; Zhang et al., 2015). Also, many studies on
both the global and Asian regional total precipitation and extreme precipitation events
and their long-term change have been reported (Becker et al., 2012; Noake et al., 2012;
Polson et al., 2013; Blanchet et al., 2009; O’Hara et al., 2009; Kunkel et al., 2009;
Ren, 2007, 2015a, 2015b, 2016; Liu et al., 2011; Fang et al., 2011; Yu et al., 2014;
Zhong et al., 2013; Wan et al., 2013; Yu et al., 2014; Xiao et al., 2015; Dang et al.,
2015). The analyses of precipitation change generally showed a detectable trend
toward more precipitation amount and more frequent extreme rainfall events over the
last decades. All of these studies have greatly enriched the understanding of global
precipitation and snowfall climatology and the climate change and variability in
different regions and varied scales.

There are few direct observations of precipitation phase at the global scale. Researchers can partition precipitation phase, but there are difficulties in doing so at
air temperatures near freezing (Ding et al., 2014; Jennings et al., 2018; Stewart et al.,
2015). However, less research has been done on global and Asian regional solid
precipitation; this is mainly because there is solid precipitation observation in the domestic surface observation network, while the current global datasets only contain the total precipitation amount without type of precipitation phase, and researchers usually cannot separate liquid and solid precipitation (snowfall). Even in the case of relatively abundant meteorological observational data in China, some works often need to use certain methods to separate the different phases of precipitation in historical precipitation data.

Previous works have discussed the phase identification of precipitations (Harder, 2013, 2014). Bourgouin (2000) introduced the area-method in separating different precipitation phases, which is based on the vertical thermal structure of the atmosphere, the distribution of condensation nuclei of water vapor, and the descent velocity to predict the precipitation phase (liquid or solid). Dai (2008) analyzed the temperature range of precipitation phase change on the continent and the ocean, and discussed the relationship between the phase change temperature and the pressure. Stefan Kienzle et al. (2008) proposed to use two input variables (threshold temperature and range) to estimate daily snowfall from precipitation data. Ye et al. (2013) suggested the application of site-specific threshold critical values of air temperature and dewpoint to discriminate between solid and liquid precipitation. Froidurot et al. (2014) pointed out that surface air temperature and relative humidity show the greatest explanatory power. Sims and Liu (2015) proposed point out that atmospheric moisture impacts precipitation phase and that wet-bulb
temperature, rather than ambient air temperature, should be used to separate solid and liquid precipitation. Harpold et al. (2017) and Jennings et al. (2018) pointed out that a humidity phase prediction method had similar or more effective accuracy compared to temperature phase prediction method in separating snowfall from precipitation data. This was also shown by other authors (e.g., Ding et al., 2014; Harder and Pomeroy, 2013, 2014; Marks et al., 2013). Harpold et al. (2017) and Keith et al. (2018) all point out that a humidity phase prediction method had similar accuracy to temperature phase prediction method in separating snowfall from precipitation data.

After the large-scale freezing rain and snow disaster in Central and South China in winter of 2008, domestic scholars paid more attention to the studies of the discrimination and identification of the precipitation phase, in order to meet the challenge of the disastrous weather forecast (Liu et al., 2013). The discriminant basis is generally the temperature of the surface and upper air layers. Zhang et al. (2013) studied the identification criteria of winter precipitation phase in Beijing, and pointed out that the phase transition in Beijing mainly occurred in March and November. They found six physical quantities closely related to the conversion of snow and rain (850 hPa temperature, 925 hPa temperature, 1000 hPa temperature, thickness between 1000 hPa and 700 hPa, thickness between 1000 hPa and 850 hPa, and the combination of surface air temperature and relative humidity). According to these physical quantities, the objective forecast index of the Beijing winter precipitation phases was established, and its accuracy reached 77%. You et al. (2013) also analyzed the discriminant index of precipitation phases in Beijing, pointing out that precipitation is...
considered as rainfall when the surface air temperature is greater than 2°C and the
dew temperature is greater than or equal to 0°C, and precipitation is considered as
snowfall when the surface air temperature is less than 1°C and the dew temperature is
less than 0°C. It is sleet, or rain and snow, when the surface air temperature is
between 1°C and 3°C. The surface air temperature, dew temperature, upper air
temperature, and relative humidity are frequently used in developing methods to
discriminate precipitation phases.

However, in a larger scale study, it is usually difficult to obtain the observational
records in the global dataset. To study the separation methods of precipitation phrase
on the continental and global scales, only the surface air temperature data are more
easily available. Dew point temperature and relative humidity data, for example, can
be used only in regional scale investigation, despite their good suitability as indicators
of precipitation phrase separation can be used (Harpold et al., 2017; Jennings et al.,
2018). Bourgouin (2000) introduced the area method in separating different
precipitation phases, which is based on the vertical thermal structure of the
atmosphere, the distribution of condensation nuclei of water vapor, and the descent
velocity to predict the precipitation phase (liquid or solid). The method, however, also
needs data of multiple observational variables in surface and upper atmosphere, which
is difficult to obtain.

Rainfall-induced runoff and snowmelt runoff are completely different
hydrological processes. Therefore, in some hydrological models, the solid-liquid
precipitation separation uses the double threshold temperature method (Wigmosta et
al., 1994; Kang et al., 1999, 2001; Chen et al., 2008) and the single threshold temperature method (Arnold et al., 1998; Refsgaard et al., 1998; Wang et al., 2004), or relies on precipitation radar monitoring data (Terry et al., 2012; Edwin et al., 2006).

The customized threshold temperature method has a larger error deviation (Marks et al., 2013; Han et al., 2010). Han et al. (2010) developed an insurance probability guarantee rate method to determine the discussed difficulty of applying the double–single threshold temperature and build a fitted model in China method. They used the data of the national stations of the China Meteorological Administration (CMA) during 1961–1979 to draw a single threshold temperature contour map, and combined it with the monthly snowfall ratio method to separate the precipitation phases by determining occurrence of snowfall and the amount of snowfall in the watershed. Chen et al. (2013) improved the solid-liquid precipitation separation procedure for mainland China by supplementing the threshold of daily mean dew temperature. The data used for the previous studies were observed prior to 1979, and they used the monthly snowfall ratio method as an auxiliary indicator.

When the rainfall and snowfall condition in different regions outside mainland China is not known, and at the same time there is no dew temperature data in the current international datasets, the method cannot be applied to the larger scale analysis. Although humidity phase separating method has a similar suitability with temperature based method (HaArpold et al., 2017; Keith Jennings et al., 2018), it is at the same-time difficult to be used in large scale due to the unavailability of humidity data. Research on the global scales can be only based on the temperature phase.
separating method.

China has sub-continental scale characteristics of lands and natural conditions, and has a diversity of climates and topographic types, and the phase separating methods developed in mainland China should have a better universality in continents and the world.

In this work, the precipitation phase separation method was developed by using the daily observational data of the national stations for years 1961–2013 in mainland China, and the threshold temperature values of rainfall and snowfall in northern China (north of 30°N) was analyzed and tested. A statistical model of the threshold temperature was established to provide a method for use in studies of large-scale snowfall climatology and climate change, weather forecasting, and hydrological model parameterization.

In this work, we used the daily observational data of the national stations for years 1961–2013 in mainland China, including the long-term records of air temperature, precipitation, relative humidity and visual observations of precipitation phase. Based on the single threshold temperature method of precipitation phase separation, we applied the Snowday Direct Definition Method (SDDM) to determine the single threshold temperature values of rainfall and snowfall in northern China (north of 30°N). A statistical model of the threshold temperature was established to provide a tool method for use in studies of large-scale snowfall climatology and climate change, weather forecasting, and hydrological model parameterization. It is believed that China has sub-continental scale characteristics of...
lands and natural conditions, and has a diversity of climates and topographic types, and the phase separating methods developed in mainland China should have a better universality in continents and the world.

2. Data and methods

2.1 Data

The main purpose of this study was to develop an easy and convenient way for separating solid and liquid precipitation, so that the objective separation of solid and liquid parts of precipitation can be achieved without exhaustive reference of observational data. International exchange data generally only contain the daily temperature and precipitation, with no other reference data, so we have only used the indicators related to temperature and precipitation to develop a method of separation.

The data used was obtained from the National Meteorological Information Center of China Meteorological Administration (CMA). The air temperature, precipitation and relative humidity data were derived from the “China Land Daily Climatic Dataset (V3.0)”. The precipitation phase observation weather phenomenon was derived from “China Land Climatic Data Daily Weather Phenomena Dataset”.

All the data have been quality controlled. Collected since January 1951, the “China Land Daily Climatic Dataset (V3.0)” contains the daily data of air pressure, surface air temperature (daily mean, daily maximum and daily minimum), precipitation, pan-evaporation, relative humidity, wind speed, sunshine hours, and 0-cm ground
temperature from 839 stations' daily data of 839 national stations' air pressure, surface air temperature (daily mean, daily maximum and daily minimum), precipitation, evaporation, relative humidity, wind speed, sunshine hours, and 0 cm ground temperature. The “China Land Climatic Data Daily Weather Phenomena Dataset” is the daily records encoded by the 752 national stations in mainland China since 1951. Cross comparison of the two datasets and the examination of station information was performed, and any incomplete temperature, precipitation, relative humidity and weather phenomena data were removed. At the same time, the data of the latitude and longitude of the station were corrected. There are total 623 stations selected for use in the study, all of which meet the demand to have information integrity, sequential continuity, and records of more than 20 years in climate reference period (1981–2010). The data may contain inhomogeneities caused by the relocation and other factors, but they would exert little influence on the analysis results, so the data are not adjusted for homogeneity.

First, the precipitation caused by fog, dew, and frost as well as the trace precipitation was removed, and daily precipitation greater than or equal to 1 mm was taken as the effective precipitation. In this regard, the main consideration is that the international exchange precipitation observation data only contains no less than 1 mm greater than or equal to 1 mm of daily precipitation. The rain and snow separation procedures developed in China thus can be compared with the corresponding works of other regions, and the method developed in this paper will be able to be applied to larger-scale research.
In the separation of daily rainfall (pure rain), mixed-phase events, and snow (pure snow) events, ‘pure rain’ was registered when the weather phenomenon data indicate that only rain occurred on that day without snow and sleet mixed-phase events; it was registered as ‘pure snow’ when only snowfall occurred without rain and sleet mixed-phase events, and ‘sleet mixed-phase events’ when there is rain and snow in the same day, in the records of weather phenomenon data. The daily maximum and minimum temperature during an occurrence of sleet mixed-phase events at each station were recorded as the reference thresholds for the snow and rain temperature threshold values.

When there is less snowfall at the station in lower latitude zone or more arid regions, there may be arbitrary random cases of snowfall. An example is from Lijiang station, Yunnan, located in 26°N, at which pure snow occurred only six times in the 30 years from 1981 to 2010. The representation of the threshold temperature would be poor in these cases. In order to ensure that the snowfall frequency is great enough and the threshold temperature is representative, we took 324 stations (Fig. 1) in northern China for use in this study. They are generally located north of the Yangtze River, approximately consistent with the January mean temperature isotherm of 3°C or the 30°N parallel. The days with the snowfall records during 1981-2010 were greater than or equal to 100d for each of the stations. In order to avoid the influence of extreme values on the determination of threshold temperature, the maximum and minimum daily mean temperature in each of the precipitation phases were not counted.
For the cases of extreme large rain and snow records at the stations, comparison was made to ensure that the minimum and maximum temperature was correct by examining the weather phenomena, surface air temperature and precipitation on the same day. When sleetmixed-phase events occurred, the range of daily mean temperature was generally large. Threshold temperature was determined only for pure rain and pure snow; the daily mean temperature on a sleetmixed-phase event day was only taken as the reference temperature threshold value.

2.2 Methods

According to the method of China’s physical geographical regionalization, mainland China is divided into three natural geographical regions: Eastern Monsoon Region (I, 231 stations), Northwest Arid Region (II, 67 stations), and Qinghai-Tibetan Plateau Region (III, 26 stations) (Fig. 1). More stations are distributed in Eastern Monsoon Region, and there are only 26 stations in Qinghai-Tibetan Plateau Region. A vast region of western part of the Qinghai-Tibetan Plateau is the well-known no-man land without climatic observations, and this would affect the analysis in some extents. The representative station of the Eastern Monsoon Region is Zhaozhou station (Zhaozhou-I hereafter) in Heilongjiang province, which has the lowest threshold temperature of snowfall and rainfall in the country. The representative station of the Qinghai-Tibet Plateau Region is Shiquanhe station (Shiquanhe-II hereafter) in Tibet Autonomous Region, which has the highest threshold temperature of snowfall and rainfall in the country. There are relatively fewer precipitation events in the Northwest Arid Region, and Balikun station...
(Balikun-III hereafter) in Xinjiang Autonomous Region was selected as the representative station because it observed relatively more precipitation events, and the rain, sleet, mixed-phase events, and snow events were evenly distributed. The station is also far from the two other regions (Table 1).

FIG.1. Regionalization and distribution of 324 national stations north of 30°N in mainland China

(I: East Monsoon Region; II: Northwest Arid Region; III: Qinghai-Tibetan Plateau; Blue triangle: stations in the East Monsoon Region; Green diamond: stations in the Northwest Arid Region; Red circle: stations in the Qinghai-Tibetan Plateau. The purple diamond denotes the representative stations in different regions: Zhaozhou of Region I; Balikun of Region II; Shiquanhe of Region III)

Table 1 Information of representative stations in the three regions

<table>
<thead>
<tr>
<th>Station name</th>
<th>Zhaozhou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Station name</td>
<td>u</td>
</tr>
</tbody>
</table>
The relative or percent error deviation of snow days (snowfall) was defined as the percentage (%) of the difference between simulated snow days (snowfall) and observational (true) actual snow days (snowfall), which could be used to indicate the effectiveness of simulated results.

The establishment of model was realized using the stepwise regression analysis method included with the SPSS Statistics 17.0. The basic idea of stepwise regression is that the variables are introduced one by one, the condition of introducing the variable is the square of the partial regression, and the test is significant; at the same time, after the introduction of each variable, the selected variables are checked individually and the insignificant variables are eliminated to ensure that all the...
variables in the final variable subset are significant. Thus, after a number of steps, we obtain the “Optimal” variable subset. The advantage of stepwise regression is that the number of the arguments contained in the regression equation is fewer, it is easy to apply, the root mean squared error (RMSE) is small, and the model created is more stable. All the arguments in the equation are guaranteed to be significant because each step has been tested.

The maximum daily mean temperature at the occurrence of snowfall at the weather station is Tsm, the minimum daily mean temperature at the time of rainfall is Trn; the number of snowfall days between Trn and Tsm is Sn, the number of rain days is Rn, and the total number of rain and snow days between Trn and Tsm is Nsr = Sn + Rn; the single critical temperature of rain and snow days is Tt-d, that is, the precipitation event that occurs when the average daily mean temperature is lower than Tt-d is considered to be a snowfall event, otherwise it is considered as a rainfall event; the single critical temperature estimated by the statistical model is Tt-p.

Using the Snowday-Direct-Definition-Method (SDDM) to define the threshold temperature of precipitation phase, the calculation steps were as follows:

First, find the Trn and Tsm in the dataset of the 623 stations, and count Sn, Rn, and Nsr. Second, calculate the daily average temperature of Nsr and sort it in ascending order. Last, the average of daily mean temperature of the Sn-th day and the (Sn+1)-th day was calculated, and it was taken as the threshold temperature (Tt-d) of the rain and snow days. For the area where pure rain and snow events did not overlap (Tsm<Trn, that is, the snowfall and rainfall events did not intersect in the...
sorted daily average temperature series), the average of Tsm and Trn was taken as the Tt-d. The average of Tt-d and the daily mean temperature of mixed-phase events day was taken as the Tt-d when Tt-d was not in the range of mixed-phase events day daily mean temperature. The Tt-ds values in this study were all within the daily mean temperature of mixed-phase events day, however, and this operation was not required.

Figure 2 shows a flow diagram of the analysis of this paper. Firstly, the daily mean temperature of different precipitation phases in northern China was calculated, the threshold temperature of each station was determined by the method of 'snow day mean temperature', and the relationships between threshold temperature and geographical and climatic factors were analyzed. Then, by using the stepwise regression analysis method in a module of the SPSS software, the main factors affecting the threshold temperature were determined, and the threshold temperature model was established. Finally, the difference of the simulated threshold temperature and the actual threshold temperature was analyzed. The spatial distribution of the relative deviation was examined, and the applicability of the model was tested and evaluated, in the last step.
3. Threshold temperature

3.1 Daily mean temperature corresponding to precipitation in different phases

There are three types of precipitation phases in northern China: snowfall, rainfall, and sleet. Most of the time, snowfall occurs in winter, rainfall occurs in summer, and...
snow, rain, and sleet can occur during the autumn and spring. Figure 3.2 and Table 2 show phase temperature distribution of precipitation events at the stations. The total precipitation events at 324 stations were included in the statistical calculations, and their corresponding daily mean temperature values (Fig. 3a2a) were examined: only snowfall occurred when the daily mean temperature was below -12.9 °C; only rainfall occurred when the daily mean temperature was higher than 22.1°C; and the three phases of snow, rain, and sleet mixed-phase events occurred when the temperature was between -12.9°C and 22.1°C.

In northern China (Fig. 3a2a) pure snow (snowfall) events occurred when the daily mean temperature was below 8.5°C, and 95% of the snowfall events occurred when the daily mean temperature was less lower than 2.7°C and higher than -16.6°C (Fig. 2a). All pure rain events (rainfall) occurred when the daily mean temperature was higher than -4.9°C, and 95% occurred when the temperature was lower than 26.0°C and higher than 6.4°C. All sleet mixed-phase events events appeared in the temperature range of -12.9–22.1°C, with 95% occurring when the daily mean temperature was lower than 8.3°C and higher than -1.6°C.
At Zhaozhou station (Fig. 3b2b), the pure snow events all occurred when the daily mean temperature was lower than -0.9°C, pure rainfall occurred when the daily mean temperature was higher than 3.4°C, and mixed-phase events occurred in case of -4.5–6.5°C. Zhaozhou station had the lowest threshold temperature (-1.2°C) —of snowfall and rainfall in the study region. At Balikun station (Fig. 3e2c), the pure snow events all occurred when the...
daily mean temperature was lower than -5.1°C, pure rain events occurred when the
daily mean temperature was higher than 4.1°C, and sleet-mixed-phase events occurred
within a temperature range of -7.8–12.3°C. At Shiquanhe-Shiquanhe-III station (Fig.
342d), the pure snow events all occurred when the daily mean temperature was
lower than 6.4°C, pure rainfall occurred when the daily mean temperature was
higher than 6.1°C, and sleet-mixed-phase events occurred when the temperature was
from -35.3°C to 16.0°C. Shiquanhe-Shiquanhe-III station had the highest threshold
temperature (6.3°C) of snowfall and rainfall in the whole region.

Pure snowfall occurred when the daily mean temperature was above 0°C,
and pure rainfall occurred when it was below 0°C. This may be because the
daily mean temperature is higher/lower than instantaneous air temperature
when snowfall/rainfall occurs, or the instantaneous air temperature is
below/above 0°C with warming/cooling after snow/rain. It could also be
because the snowflakes are formed in the upper atmosphere with the lower
temperature, the temperature near the surface cools faster due to the intrusion
of extremely cold air, and they are not fully melted when they fall and still exist
in the form of snow. In the lower atmosphere layer (below 3000 m), there is a
lot of super-cooling water, and the air temperature is in the range of 0 — 15°C.

With a rich condensation nucleus, an abundance of moisture, and a lack of a
freezing nucleus (the ice nucleation), raindrops can form below 0°C, producing
glaze or rime on the ground surface.
Table 2 The distribution range of daily mean temperature under different phases of precipitation at stations

<table>
<thead>
<tr>
<th>Station</th>
<th>All</th>
<th>Zhao</th>
<th>Balkun</th>
<th>Shiquanhe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxi</td>
<td>8.5</td>
<td>0.9</td>
<td>5.1</td>
<td>6.4</td>
</tr>
<tr>
<td>Min</td>
<td>-35.4</td>
<td>14.0</td>
<td>18.5</td>
<td>13.8</td>
</tr>
<tr>
<td>Ave</td>
<td>5.2</td>
<td>2.9</td>
<td>2.9</td>
<td>3.2</td>
</tr>
<tr>
<td>S</td>
<td>16.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>27.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rain day temperature (℃)</td>
<td>Maxi</td>
<td>33.3</td>
<td>27.5</td>
<td>22.1</td>
</tr>
<tr>
<td>Min</td>
<td>-4.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave</td>
<td>3.6</td>
<td>1.6</td>
<td>4.1</td>
<td>4.3</td>
</tr>
<tr>
<td>5%</td>
<td>-1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td>8.3</td>
<td>5.5</td>
<td>9.5</td>
<td>13.1</td>
</tr>
<tr>
<td>Sleet day temperature (℃)</td>
<td>Maxi</td>
<td>22.1</td>
<td>6.5</td>
<td>12.3</td>
</tr>
<tr>
<td>Min</td>
<td>-12.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave</td>
<td>3.6</td>
<td>1.6</td>
<td>4.1</td>
<td>4.3</td>
</tr>
<tr>
<td>5%</td>
<td>-1.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95%</td>
<td>8.3</td>
<td>5.5</td>
<td>9.5</td>
<td>13.1</td>
</tr>
</tbody>
</table>
It can be seen from Fig. 3-2 and Table 2 that there is a larger difference of the maximum daily mean temperature of snowfall (extreme threshold temperature of snowfall) and the minimum daily mean temperature of rainfall (extreme threshold temperature of rainfall) among the stations.

Statistics on the maximum daily mean temperature of all snowfall at each station

<table>
<thead>
<tr>
<th>Station</th>
<th>Max</th>
<th>Min</th>
<th>Ave</th>
<th>5%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
<th>95%</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>8.5</td>
<td>-35.4</td>
<td>-5.2</td>
<td>16.6</td>
<td>2.7</td>
<td>22.1</td>
<td>12.9</td>
<td>2.6</td>
<td>1.6</td>
<td>8.3</td>
<td>23.3</td>
<td>4.9</td>
<td>16.3</td>
</tr>
<tr>
<td>Zhaozhen</td>
<td>8.9</td>
<td>-20.5</td>
<td>-10.2</td>
<td>-16.6</td>
<td>-3.3</td>
<td>-8.5</td>
<td>-4.5</td>
<td>-1.6</td>
<td>-4.9</td>
<td>-2.5</td>
<td>-7.3</td>
<td>-3.4</td>
<td>-17.8</td>
</tr>
<tr>
<td>Baiyun</td>
<td>8.1</td>
<td>-22.2</td>
<td>-3.2</td>
<td>-17.8</td>
<td>-8.8</td>
<td>-12.3</td>
<td>-7.8</td>
<td>-8.4</td>
<td>-12.8</td>
<td>-5.2</td>
<td>-22.1</td>
<td>-4.1</td>
<td>-14.3</td>
</tr>
<tr>
<td>Shiquan</td>
<td>8.4</td>
<td>-18.1</td>
<td>-4.4</td>
<td>-15.3</td>
<td>-8.8</td>
<td>-16.9</td>
<td>-5.3</td>
<td>-4.3</td>
<td>-5.5</td>
<td>-8.1</td>
<td>-12.6</td>
<td>5.7</td>
<td></td>
</tr>
</tbody>
</table>

As can be seen from Figure 3, there is a common spatial distribution feature in the Tsm, Trn, maximum daily mean temperature of snow day, minimum daily mean temperature of rain day, and the
average daily mean temperature of mixed-phase events day in northern China, with the high values generally in the Tibetan Plateau and southern Xinjiang, while the low values mostly in eastern and northern Xinjiang. At the stations analyzed, most have a relationship of Trn<Tsm, that is, the minimum daily mean temperature at the time of a rain event is lower than the maximum daily mean temperature at the time of a snowfall event. Only in a few of places in Northwest Arid Region, is the maximum daily mean temperature of a snow day lower than the minimum daily mean temperature of a rain day, indicating that pure rain and snow events do not overlap.

\[
\begin{align*}
\text{Maximum daily mean temperature for snow days} & \quad (\text{a}) \\
\text{Minimum daily mean temperature for rain days} & \quad (\text{b}) \\
\text{Average daily mean temperature for sleet days} & \quad (\text{c}) \\
\text{Tsm - Trn} & \quad (\text{d})
\end{align*}
\]
3.2 Threshold temperature determination

The threshold temperature is determined directly by daily mean temperature of various precipitation days, and the calculation steps are as follows: First, the number of snow days (Sn) and the number of rain days (Rn) between Trn and Tsm is calculated, and the total number of the rain and snow days (Nsr = Sn + Rn) between Trn and Tsm is also calculated. Second, the daily mean temperature of Nsr is calculated and ranked in ascending order. Last, the average of daily mean temperature of the Sn\(^{th}\) day and the (Sn+1)\(^{th}\) day is calculated, and it is taken as the threshold temperature (Tt\(_d\)) of the rain and snow days. For the area where pure rain and snow events do not overlap, the average of the maximum daily mean temperature of snow day and the minimum daily mean temperature of rain day is taken as the threshold temperature (Tt\(_d\)). The average of Tt\(_d\) and the daily mean temperature of sleet day is taken as the Tt\(_d\) when Tt\(_d\) is not in the range of sleet day daily mean temperature.

The Tt\(_d\) values in this study are all within the daily mean temperature of sleet day, however, and this operation is not required.
Figure 5-4 shows the distribution of the relative deviation of the snow days and snowfall in northern China, determined by the threshold temperature as mentioned in section Data and Methods above, to the actual snow days and snowfall counted by using weather phenomenon records. The relative deviation of snow day was smaller. This is due to the definition of threshold temperature being directly determined by snow-day mean temperature. Since the daily mean temperature of the Snth day and the (Sn+1)th day is the same under this definition, however, there will be a slight positive bias in the threshold temperature of the same temperature day, with a range of relative deviation (0, 2.3%).

The spatial distribution of the relative deviation of the snowfall was mainly positive, which is due to the systematic deviation of the method. Larger deviation appeared in eastern part of the Qinghai-Tibetan Plateau and the Yangtze-Huaihe River Basins. These areas have more precipitation and sufficient water vapor. Under the same water vapor condition, the observed rainfall was greater than the observed snowfall, and the amount of snowfall determined by the threshold temperature was slightly large, with the certain sites even larger. Small values occurred in the southeastern Northeast China, the border zone between Inner Mongolia and Xinjiang, and western Xinjiang, with the main reason related to the less precipitation and insufficient water vapor. Overall, the relative deviation of snowfall is between -5% and 20%. There were 312 stations (more than 96%) with a deviation was less than or equal to 10%, and the absolute value of the relative deviation was less than 5% in most areas.
FIG. 5. The spatial distribution of the relative deviation of the days (a) and amount (b) of snowfall determined by the threshold temperature (Tt-d) in northern China.

The spatial distribution of the threshold temperature (Tt-d) of rain and snow at the stations north of 30°N are shown in Fig. 6. The average Tt-d is 2.3 °C for Eastern Monsoon Region, 3.4 °C for Northwest Arid Region, and 5.2°C for the Qinghai-Tibetan Plateau. The highest threshold temperature of the study region is 6.3°C (Shiquanhe, Fig. 3d), the lowest is -1.2°C (Zhaozhou, Fig. 3b), the threshold temperature range was 7.5°C, and the average threshold temperature for the whole region was 2.8°C. The high-value areas in the northern Qinghai-Tibetan Plateau, with a threshold temperature of more than 4°C, and the low-value areas were generally in eastern Northeast China, North China, and northern Xinjiang with the threshold temperature mostly less than 2°C. The threshold temperature east of 90°E decreased from west to east, and it decreased from east to west in areas west of 90°E. On the whole, the west of...
105°E showed an approximately zonal distribution, and the threshold temperature decreased with the increase of latitude; the east of 105°E had a meridional distribution, and the threshold temperature decreased with increasing longitude. There are some uncertainties on the distribution of the threshold temperature in the Qinghai-Tibetan Plateau and northwestern deserts mainly due to the interpolation in the regions with sparser observations.

Figure 6. Spatial distribution of threshold temperature of precipitation phases in northern China (I: East Monsoon Region; II: Northwest Arid Region; III: Qinghai-Tibetan Plateau. Unit: °C).

This distribution feature was well consistent with the spatial pattern of the maximum daily mean temperature of snow days (Fig. 4a), the minimum daily mean temperature of rain days (Fig. 4b), and the average daily mean temperature of sleet days (Fig. 4c) previously counted in northern China. It can therefore be considered to have reflected the actual observations.
3.3 Correlation between threshold temperature and geographical/climatic factors

Because the precipitation records of the major international datasets do not indicate the precipitation phases, it is necessary to distinguish them outside China by establishing a statistical model of threshold temperature applicable in the sub-continental or larger scales.

The spatial distribution of threshold temperature of solid and liquid precipitation in northern China may be affected by various geographical and climatic factors. Our analysis found that the threshold temperature (Tt-d) is related to the longitude, latitude, altitude, annual precipitation, annual mean air temperature, and annual relative humidity of the observational sites, with a positive correlation with altitude and a negative correlation with the other factors. All the correlations passed the significant test \((p=0.05)\) at 0.05 level (Fig. 6).

Figure 7 shows the changes of the threshold temperature in northern China with latitude, altitude, annual precipitation, and annual mean relative humidity. In the lower latitude area, the threshold temperature was generally higher and more disperse variable, while in the higher latitude area, it was generally slightly lower and relatively centralized less variable. The threshold temperature had a clear decreasing trend with increase of latitude (Fig. 6a). In lower altitude area, the threshold temperature was lower, while it was higher in mountains and plateaus, and a highly significant increasing trend of threshold temperature with altitude can be seen (Fig. 6b). There was a negative correlation between the threshold temperature and the annual precipitation, and a more significant negative correlation with the annual
relative humidity (Fig. 6c, d).

FIG. 7. Relationship of the threshold temperature (Tt-d) with latitude (a), altitude (b), annual precipitation (c) and annual mean relative humidity (d) in northern China (Blue triangle: East Monsoon Region; Green diamond: Northwest Arid Region; Red circle: Qinghai-Tibetan Plateau)

It is possible that the relationship of the threshold temperature with longitude and latitude is also related to the variations of altitude and relative humidity in the study region. The altitude and relative humidity generally decrease from west to east and...
from south to north, and the altitude and relative humidity have better correlations with the threshold temperature, which may be the reason why threshold temperature decreases with the increase of the longitude and latitude. Therefore, altitude and relative humidity may be the more important factors in determining the threshold temperature.

The threshold temperature was positively correlated with altitude, which may mainly be because the ground surface receives stronger solar radiation, causing the boundary-layer atmosphere to heat rapidly in the high altitude areas during daytime. However, the upper air temperature is low, the temperature lapse rate is larger, the cloud bottom-height is low, and the path of snowflakes is short, so the snowfall phenomenon can also be more frequently observed when the daytime surface air temperature is high.

The threshold temperature was negatively correlated with annual precipitation in particular with relative humidity, which may be related to the low latent heat flux and high sensible heat flux in arid area. When the sensible heat flux is high, the ground surface air temperature is high, and the temperature lapse rate is large. In the case of the same condensation height or cloud bottom-height, snowfall is more likely to occur under the condition of higher surface air temperature. It is also possible that the higher the threshold temperature in arid area than in humid area is caused by a difference of the more complicated microphysical processes around the snowflakes between the two climatic conditions.

3.4 Establishment of the threshold temperature model
Considering that the relative humidity data of some areas is difficult to obtain, the precipitation factor was selected as the independent variable. Using the SPSS software stepwise regression analysis method, a statistical model of threshold temperature was established with latitude, altitude, and annual precipitation as influential factors. The model, which passed the significant test at the 0.05 level, can be expressed as follow:

\[
T_{t-p} = 6.81576376 + (-0.09305) \times N + (0.000567) \times H + (-0.00182) \times R \quad (1)
\]

where \(T_{t-p}\) is the simulated threshold temperature (°C), \(N\) is the latitude of the station, \(H\) is the altitude of the station (m), and \(R\) is the annual precipitation of the station (mm).

The correlation coefficient between \(T_{t-p}\) and \(T_{t-d}\) (threshold temperature determined by using the synoptic phenomena) is 0.87. The median and standard deviation of the simulated threshold temperature \((T_{t-p})\) were 2.53 and 1.16, which were close to the median (2.64) and standard deviation (1.33) of the \(T_{t-d}\). The maximum simulated threshold temperature was 6.05 °C, minimum was 0.22 °C, temperature range was 6.26 °C, and average simulated threshold temperature was 2.81 °C for the whole region. The maximum positive deviation of the \(T_{t-p}\) to the \(T_{t-d}\) was 3.0 °C, and the minimum negative deviation was 1.7 °C. The stations, at which relative deviation of snow day and snowfall were less than 10%, reached 95% and 91% of the total, respectively.

In the East Monsoon Region (Region I) and the Northwest Arid Region (Region II), the simulated threshold temperature was generally lower than the \(T_{t-d}\) (0.005 °C lower in Region I on average, and 0.02 °C lower in Region II on average). However, it
was higher in the Qinghai-Tibetan Plateau Region (0.097°C higher on average) (Fig. 87). Considering that the relative humidity data of some areas is difficult to obtain, the precipitation factor was selected as the independent variable. Using the SPSS software stepwise regression analysis method, a statistical model of threshold temperature was established with annual mean air temperature, altitude, and annual precipitation as influential factors. The model, which passed the significant test (p=0.05), can be expressed as follow:

\[
T_{t-p} = 1.69147 + (0.09585) \times T + (0.001311) \times H + (-0.00172) \times R
\]

where \(T_{t-p}\) is the simulated threshold temperature (°C), \(T\) is the annual mean air temperature(°C) of the station, \(H\) is the altitude of the station (m), and \(R\) is the annual precipitation of the station (mm).

The correlation coefficient between \(T_{t-p}\) and \(T_{t-d}\) (threshold temperature determined by using the synoptic phenomena) is 0.88. The median and standard deviation of the simulated threshold temperature (Tt-p) were 2.54°C and 1.17°C, which were close to the median (2.64°C) and standard deviation (1.33°C) of the Tt-d. The maximum simulated threshold temperature was 5.9 °C, minimum was -0.4 °C, temperature range was 5.5 °C, and average simulated threshold temperature was 2.8 °C for the whole region. The maximum positive deviation of the Tt-p to the Tt-d was 2.9 °C, and the minimum negative deviation was -1.8 °C. The numbers of stations with relative error less than 10% for snow day and snowfall reached 97% and 92% respectively.

In the East Monsoon Region (Region I), the simulated threshold temperature was
generally lower than the Ti-d (0.026 °C in Region I on average). However, it was higher in the Northwest Arid Region (Region II) and the Qinghai-Tibetan Plateau Region (0.063°C lower in Region II on average, and 0.065°C higher on average) (Fig. 7).

FIG. 7. Simulated threshold temperature (Ti-p), actual threshold temperature (Ti-d) and their difference for observational stations in different regions of northern China (1: East Monsoon Region; 2: Northwest Arid Region; 3: Qinghai-Tibetan Plateau Region)
The correlation coefficients of the standard deviation and median of the snowfall days (simulated snowfall days) with those of actual snowfall days at all the stations were 0.92 and 0.94, respectively. The differences of the standard deviation and median of the simulated snowfall days and actual snowfall days are smaller overall, and the differences of the median is slightly larger in the Qinghai-Tibet Plateau where there was more snowfall. Fig. 9 shows spatial distribution of the relative deviation of the simulated snow days (Fig. 9a) and snowfall (Fig. 9b) relative to the actual snow days and snowfall at the stations. The relative deviation range of snowfall days in northern China was between -21.17% and 18.38%, with an average of 0.12%; the relative deviation was smaller in mid-southern parts of the study region, and larger in the coastal areas and the northern Qinghai-Tibetan Plateau-Qinghai-Xizang Plateau. In the Qinghai-Tibetan Plateau, the medians of the simulated snow days were smaller than those of the actual snow days, and the relative deviations were larger. This may be related to the fact that the snowfall days in northern Tibetan Plateau fluctuated greatly, and there are some years with larger numbers of snowfall days. The relative deviation range of snowfall in the whole region was between 17.3% and 30.38% with an average of 1.09%, and the spatial distribution was basically the same as that of the relative deviations of snow days.
FIG. 7. Simulated threshold temperature (Tt-p), threshold temperature (Tt-d) and their difference for observational stations in different regions of northern China (Region 1: East Monsoon Region; Region 2: Northwest Arid Region; Region 3: Qinghai-Tibetan Plateau Region).

The mean absolute errors of threshold temperature of the simulated snowfall are 0.476°C for East Monsoon Region, 0.560°C for Northwest Arid Region, and 0.435°C for Qinghai-Tibetan Plateau Region. Fig. 8 (and also Table 3, Mean errors of threshold temperature of simulated snowfall and snow days for the study area and the three regions) shows the spatial distribution of the absolute errors of threshold temperature of the simulated snowfall and snow days. Larger errors can be seen in the Northwest Arid Region.
Fig. 8. Absolute error distribution of snowfall days (a) and snowfall (b) for the simulated threshold temperature.

Fig. 9 shows spatial distribution of the relative error of the simulated snow days (Fig. 8a) and snowfall (Fig. 8b) relative to the actual snow days and snowfall at the stations. The relative error range of snowfall days in northern China was between -16.8% and 17.0%, with an average of -0.1%; the relative error was smaller in mid-southern parts of the study region, and larger in the coastal areas and the northern Qinghai-Tibetan Plateau. In the Qinghai-Tibetan Plateau Region, the medians of the simulated snow days were smaller than those of the actual snow days, and the relative errors were larger. This may be related to the fact that the snowfall days in northern Tibetan Plateau fluctuated greatly, with some years with larger numbers of snowfall days. The relative error range of snowfall in the whole region was between -15.5% and 29.0% with an average of 1.1%, and the spatial distribution was basically the same as that of the relative errors of snow days.
FIG. 9. Relative error Deviation distribution of snowfall days (a) and snowfall (b) defined by the simulated threshold temperature

Affected by the extremely low air temperature and the abnormally deficient water vapor due to the East Asian winter monsoon, the pure snow days (snowfall) with only snowfall weather phenomenon were relatively less frequent (low) in northern China, as compared to other regions of the same latitude; therefore, it is more likely that the relative deviation relative error is large in the study region. However, the relative deviation relative error range shown here is acceptable, and the fitting effect is generally good.

The RMSE MSRE of the relative deviation relative error of snow days was 3.9, and the RMSE MSRE of the relative deviation relative error of snowfall was 5.3. The annual snow days and the amount of snowfall were less in the mid-southern parts of the study region which had negative relative deviation relative errors of the simulated snow events; however, snow days and snowfall were slightly more numerous in the
northern part of the Sichuan Basin. The number of snow days and snowfall was less in the coastal area which had positive relative deviation of the simulated snow events, while there were more snow days and snowfall in the northern Qinghai–Tibetan Xizang–Plateau. The relative deviation of snow days (snowfall) and the threshold temperature had a correlation coefficient of -0.38 (-0.31); both passed the significant test ($p=0.05$) at 0.05 level. It can be seen that the relative deviation in the area with low threshold temperature tends to be positive, and that relative deviation in the area with high threshold temperature is generally negative.

4. Comparison with previous works

Previous researches used the insurance probability to obtain the threshold geophysical parameters of the snow–rain separation (e.g. Han et al., 2010; Sims and Liu, 2015). Sims and Liu (2015) found that the wet bulb temperature and low layer temperature lapse rate had the most significant influence on the precipitation phase, with a lapse rate of 6°C/km resulting in an 86% insurance probability of solid
precipitation if the near-surface wet bulb temperature was around 0 as. Surface air pressure also exerted an influence on precipitation phase in some cases. However, the climatic parameters are once again less available in the major international historical climate datasets, though the finding and the method recommended are valuable in investigating into local and regional precipitation phases.

Han et al. (2010) used the insurance probability method to determine the single threshold temperature of rain and snow, taking the daily average temperature of the 98.5% guarantee rate of rainfall and snowfall, 50% guarantee rate of mixed-phase event as the threshold temperature. For comparison of SDDM snow day mean temperature method and the insurance probability method, insurance probability method as reported in Han et al. (2010), the number of snow days (Sn) and rain days (Rn) between Trn and Tsm was calculated, respectively. The corresponding daily mean temperature at the insurance probability of the snow and rain days between [Trn, Tsm], $X (x \in (0-99\%))$ (at 1% intervals), was estimated. For example, the number of rain days and snow days between Trn and TSM is 100d respectively; when $x = 90\%$ is taken, the rain day temperature T_{r90} corresponds to the insurance probability of 90%, that is, to ensure the minimum daily mean temperature in the event of 90% rain days between Trn and TSM, while T_{r90} is to guarantee that the maximum daily mean temperature in the event of 90% snowfall days is between Trn and TSM. The arithmetic mean of each station’s T_{rx} is defined as the threshold temperature T_{t-x} at the station’s insurance probability x.

The threshold temperature (T_{t-x}) was calculated according to the insurance...
probability method, and the threshold temperature (Ti-d) was obtained based on the definition in this paper; the relative deviation comparison is presented in Table 3. For simplicity, the insurance probability interval in the table was taken as 10%. The maximum, minimum, and range of the threshold temperature (Ti-x) under different insurance probability, and of the (Ti-d), in northern China, are given in the table; at the same time, the maximum, minimum, and range of the relative deviation of the snow days and snowfall, as well as the number of stations with a relative deviation less than or equal to 10%, are also given.

Table 3 Comparison of statistics and the relative deviation resulting from threshold temperature Ti-x and Ti-d

<table>
<thead>
<tr>
<th>Region</th>
<th>Ti-x Maximum</th>
<th>Ti-x Minimum</th>
<th>Ti-x Range</th>
<th>Ti-d Maximum</th>
<th>Ti-d Minimum</th>
<th>Ti-d Range</th>
<th>Snow Days</th>
<th>Stations with Relative Error ≤ 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 shows that, using the insurance probability method, the test results of the threshold temperature (Tt-70), obtained when the insurance probability $x = 70\%$ was taken, represented the best values, as the difference between the minimum and maximum values of the threshold temperature was small, and the relative errors were small, with the relative deviation relative error of the snow days at 314 stations $\leq 10\%$, and that of the snowfall at 283 stations $\leq 10\%$.

The range of threshold temperature Tt-d of snow days determined in this paper was less than that of the Tt-70. The relative deviation relative error of snow days was obviously small, and the relative deviation relative error of snowfall was much less than that of the Tt-70, with more stations having the relative deviation relative error $\leq 10\%$ for both snow days and snowfall. Therefore, the method developed in this paper has an advantage over the insurance probability method developed in the previously works.

Table 3 Comparison of statistics and the errors resulting from threshold temperature Tt-p

<table>
<thead>
<tr>
<th>North of China</th>
<th>Region I</th>
<th>Region II</th>
<th>Region III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti-40</td>
<td>2.3</td>
<td>8.7</td>
<td>25.4</td>
</tr>
<tr>
<td>Ti-20</td>
<td>2.4</td>
<td>8.8</td>
<td>25.1</td>
</tr>
<tr>
<td>Ti-30</td>
<td>2.2</td>
<td>8.7</td>
<td>23.6</td>
</tr>
<tr>
<td>Ti-40</td>
<td>2.4</td>
<td>8.6</td>
<td>23.6</td>
</tr>
<tr>
<td>Ti-50</td>
<td>2.5</td>
<td>8.5</td>
<td>21.1</td>
</tr>
<tr>
<td>Ti-60</td>
<td>2.4</td>
<td>7.9</td>
<td>19.1</td>
</tr>
<tr>
<td>Ti-70</td>
<td>2.4</td>
<td>7.8</td>
<td>15.6</td>
</tr>
<tr>
<td>Ti-80</td>
<td>2.7</td>
<td>8.1</td>
<td>18.3</td>
</tr>
<tr>
<td>Ti-90</td>
<td>2.5</td>
<td>7.7</td>
<td>20.9</td>
</tr>
<tr>
<td>Ti-10</td>
<td>2.3</td>
<td>7.5</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>Correlation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Snowday</td>
<td>0.999</td>
<td>0.998</td>
<td>0.999</td>
</tr>
<tr>
<td>MAE (d)</td>
<td>7.77</td>
<td>7.52</td>
<td>5.21</td>
</tr>
<tr>
<td>MRE (%)</td>
<td>2.71</td>
<td>2.98</td>
<td>1.68</td>
</tr>
<tr>
<td>RMSE (d)</td>
<td>3.9</td>
<td>4.3</td>
<td>2.3</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.997</td>
<td>0.996</td>
<td>0.999</td>
</tr>
<tr>
<td>Snowfall</td>
<td>0.997</td>
<td>0.996</td>
<td>0.999</td>
</tr>
<tr>
<td>MAE (mm)</td>
<td>37.18</td>
<td>37.7</td>
<td>19.67</td>
</tr>
<tr>
<td>MRE (%)</td>
<td>3.71</td>
<td>4.09</td>
<td>2.1</td>
</tr>
<tr>
<td>RMSE (mm)</td>
<td>73.78</td>
<td>76.13</td>
<td>43.81</td>
</tr>
</tbody>
</table>
China has a vast territory. The study region across the latitude range 30–54°N, and a longitude range of 73–136°E, with various climate types of temperate monsoon zone, continental arid zone and alpine including the highest mountainous system of the Qinghai-Tibetan Plateau. The complex and diverse geophysical and climatic condition makes the region ideal for understanding the transition of precipitation phrases and developing a method to separate the different precipitation phrases.

We made an attempt to develop such a method to separate the precipitation phases by using a high-quality daily observational dataset in this paper. Our study not only determined the threshold temperature with more reliable results, but also tested the statistical model of threshold temperature, provided the results of the model and the relative deviation range for different regions, and confirmed the applicability of the method in the complex geographic area with diverse climate types.

With the method of determining threshold temperature developed in this paper, the relative deviation of snow days and snowfall calculated for most of the stations was very small, and the stations with less than 10% relative deviation accounted for 95.1% and 90.7%, respectively. This method could be used to better determine the snow days than the snowfall, with the relative deviation of snowfall was slightly larger in the Huaihe River basin. This is mainly because, when using the threshold temperature to calculate the amount of snowfall, rain days with a daily mean temperature below the threshold temperature
could be identified as the snow day, and also some snow days with a daily mean

temperature above the threshold temperature could be classified as rain days. In the

frequent transformation of the precipitation phases (early spring and early winter),

precipitation on a rain day is often greater than that on a snow day, so the priority to

ensure the determination of a snow day, the estimated relative deviation of snowfall would be a little larger.

Han et al. (2010) used the insurance probability method to determine the single

threshold temperature of rain and snow, taking the daily mean temperature of the 98.5%

insurance probability of rainfall and snowfall, 50% insurance probability of

mixed-phase events as the threshold temperature. For comparison of SDDM and the

insurance probability method, the number of snow days (Sn) and rain days (Rn)

between Trn and Tsm was calculated, respectively, using the two methods. The

corresponding daily mean temperature at the insurance probability of the snow and

rain days between [Trn, Tsm], X (x ∈ (0–99%)) (at 1% intervals), was estimated. For

example, the number of rain days and snow days between Trn and TSM is 100d

respectively; when x = 90% is taken, the rain day temperature Tr90 corresponds to the

insurance probability of 90%, that is, to ensure the minimum daily mean temperature

in the event of 90% rain days between Trn and TSM, while Ts90 is to guarantee that

the maximum daily mean temperature in the event of 90% snowfall days is between

Trn and TSM. The arithmetic mean of each station’s Trx and Tsx is defined as the

threshold temperature Tt-x at the station’s insurance probability x.

The threshold temperature (Tt-x) was calculated according to the insurance
probability method, and the threshold temperature (Tt-d) was obtained based on the definition in this paper; the relative error comparison is presented in Table 3. For simplicity, the insurance probability interval in the table was taken as 10%. The maximum, minimum, and range of the threshold temperature (Tt-x) under different insurance probability, and of the (Tt-d), in northern China, are given in the table; at the same time, the maximum, minimum, and range of the relative error of the snow days and snowfall, as well as the number of stations with a relative error less than or equal to 10%, are also given.

Table 3 Comparison of statistics and the relative errors resulting from threshold temperature Tt-x and Tt-d

<table>
<thead>
<tr>
<th></th>
<th>Threshold temperature (℃)</th>
<th>Relative error of snow days (%)</th>
<th>Relative error of snowfall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max</td>
<td>min</td>
<td>max-min</td>
</tr>
<tr>
<td>Tt-0</td>
<td>6.4</td>
<td>-2.3</td>
<td>8.7</td>
</tr>
<tr>
<td>Tt-10</td>
<td>6.4</td>
<td>-2.3</td>
<td>8.7</td>
</tr>
<tr>
<td>Tt-20</td>
<td>6.5</td>
<td>-2</td>
<td>8.8</td>
</tr>
<tr>
<td>Tt-30</td>
<td>6.5</td>
<td>-2.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Tt-40</td>
<td>6.4</td>
<td>-2.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Tt-50</td>
<td>6.5</td>
<td>-2</td>
<td>8.5</td>
</tr>
<tr>
<td>Tt-60</td>
<td>6.4</td>
<td>-1.5</td>
<td>7.9</td>
</tr>
<tr>
<td>Tt-70</td>
<td>6.4</td>
<td>-1.4</td>
<td>7.8</td>
</tr>
<tr>
<td>Tt-80</td>
<td>6.7</td>
<td>-1.4</td>
<td>8.1</td>
</tr>
<tr>
<td>Tt-90</td>
<td>6.5</td>
<td>-1.2</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Table 3 shows that, using the insurance probability method, the test results of the threshold temperature (Tt-70), obtained when the insurance probability x = 70% was taken, represented the best values, as the difference between the minimum and maximum values of the threshold temperature was small, and the relative errors were small, with the relative error of the snow days at 314 stations ≤ 10%, and that of the
snowfall at 283 stations \(\leq 10\% \).

The range of threshold temperature Tt-d of snow days determined in this paper was less than that of the Tt-70. The relative error of snow days was obviously small, and the relative error of snowfall was much less than that of the Tt-70, with more stations having the relative errors \(\leq 10\% \) for both snow days and snowfall. Therefore, the method developed in this paper has an advantage over the insurance probability method developed in the previously works.

Ding (2014) used a parameterization scheme to determine the precipitation type with wet-bulb temperature, relative-humidity, and surface elevation. In the work of Ding, each precipitation event is assigned a number, determined phase with Ding’s parameterization scheme and other nine scheme in the literature. The accuracies over the air temperature range \([0^\circ C, 4^\circ C]\) show that Ding’s method is better than other.

In order to compare with Ding’s work, the accuracy of Tt-d is tested over the same air temperature range. The results are shown in Table 5, the accuracy of Ding is from Ding (2014). The Tp-CH is the Tt-p of all stations in the study area. The Tp-R1 is the Tt-p of stations independent sample modeling in East Monsoon Region. The Tp-R2 is the Tt-p of Northwest Arid Region. The Tp-R3 is the Tt-p of Qinghai-Tibetan Plateau.

<table>
<thead>
<tr>
<th></th>
<th>Ding</th>
<th>Tp-CH</th>
<th>Tp-R1</th>
<th>Tp-R2</th>
<th>Tp-R3</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>59.3</td>
<td>87</td>
<td>87</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>R1</td>
<td>53.1</td>
<td>83</td>
<td>83</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>R2</td>
<td>60.1</td>
<td>89</td>
<td>89</td>
<td>90</td>
<td>88</td>
</tr>
<tr>
<td>R3</td>
<td>66.1</td>
<td>99</td>
<td>99</td>
<td>99</td>
<td>99</td>
</tr>
</tbody>
</table>
Ding separated rain, snow, and sleet. The work of this paper only separates rain and snow, so the accuracy should be higher. However, the test result of Tt-p of each region is relatively stable. The SDDM is stable and reliable for the separation of rain and snow. Liu and Ren et al. (2018) tested the possibility of extrapolating the statistical model of separating solid precipitation from liquid precipitation. Considering less snowfall in the lower latitudes and less rainfall in the higher latitudes, the proposed area for use of the method is between 30°N to 60°N in the latitude range, and areas outside this range may have large deviation.

In this paper, only the two phases of pure snowfall and pure rainfall were determined, however, and the sleetmixed-phase events were not analyzed. In the case of sleetmixed-phase events, the surface air temperature changed greatly during a day; there was probably sleetmixed-phase events, pure rain and pure snow in the same day, the actual threshold temperature fluctuations were large, and it would be difficult to accurately determine and simulate. Because the method used in this paper did not quantify the sleetmixed-phase events, when precipitation was separated into solid and liquid state, the mixed-phase events sleet will be classified as snow when the daily mean temperature is lower than the threshold temperature, and as rain when the daily mean temperature is higher than the threshold temperature, causing a certain error. However, for the study of large-scale snowfall climatology, especially for studies of the larger than subcontinental scale snowfall climate change, the snow and rain separation method presented in this paper could well meet the needs.

Liu and Ren et al. (2018) tested the possibility of extrapolating the statistical
model of separating solid precipitation from liquid precipitation. Considering less
snowfall in the lower latitudes and less rainfall in the higher latitudes, the proposed
area for use of the method is between 30°N to 60°N in the latitude range, and areas
outside this range may have large deviation.

Conclusions

Based on the analysis of the historical daily temperature, precipitation, and
weather phenomenon observation data in northern China, the threshold temperature
model for determining the phase of rain and snow was established and tested. The
main conclusions are as follows:

(1) The threshold temperature value of rain and snow determined based on
weather phenomenon data is between -1.2–6.3°C, with a temperature range of 7.5 °C
and an average value of 2.81 °C. The high values were in the northern
Qinghai-Tibetan Plateau, reaching more than 4 °C, and the low values were found in
Northeast China, North China, and northern Xinjiang Autonomous Region, generally
less than 2 °C. The west of 40°E showed an approximately zonal distribution,
and the threshold temperature decreased with latitude; the east of 105°E had a meridional distribution, and the threshold temperature decreased with increasing longitude.

(2) The threshold temperature was more variable in the low latitude areas, while it was slightly lower and relatively centralized in the high latitudes, with a clear decreasing trend with increase of latitude. The threshold temperature was lower at low altitudes, higher in the high altitude areas, and had a trend to increase with altitude. There was a good statistically significant negative correlation between the threshold temperature and annual total precipitation and annual mean relative humidity, with the negative correlation with relative humidity especially significant.

(3) A statistical model based on latitude, elevation, and annual precipitation can be used to simulate the threshold temperature of the precipitation phase in northern China, with less relative deviation in simulated snow days and snowfall. The stations with relative deviation less than 10% reached 95.1% and 90.7% for the snow days and snowfall respectively.
Acknowledgements: This study is financed by the Ministry of Science and Technology of China (Fund No: 2018YFA0605603) and the China Natural Science Foundation of China (NSFC) (Fund No: 41575003 and 41771067) and the Ministry of Science and Technology of China (Fund No: GYHY201206012).
References

Jiang Y, Qian WH. 2003: Regional characteristics of Heavy Snowfall or Snowstorm in Inner Mongolia.
A model for simulating the response of runoff from the
mountainous watershed of inland river basins in the arid area of northwest China to climatic
changes. Science in China, Series D, 42 (Suppl.): 52-63.

Keith SJ, Taylor SW, Ben L, et al. 2018: Spatial variation of the rain-snow temperature threshold
across the Northern Hemisphere. Nature communications. DOI: 10.1038/s41467-018-03629-7

Kienzle S, 2008: A new temperature based method to separate rain and snow. Hydrol. Processes, 22,
5067-5085. DOI:10.1002/hyp.7131.

Journal of Climate, 22(23): 6204-6216.

Kang ES, Cheng GD, Lan YC, et al., 2001: Alpine-runoff simulation of the Yalong River for the South-

Kang ES, Cheng GD, Lan YC, et al., 1999: A model for simulating the response of run off from the
mountainous watershed of inland river basins in the arid area of northwest China to climatic
changes. Science in China, Series D, 42 (Suppl.): 52-63.

Monsoon Marginal Areas During Last Five Centuries. SCIENTIA GEOGRAPHICA SINICA,
31(4):401-411.

Liu YL, Ren GY, Sun XB, 2018. Establishment and Veriﬁcation of Single Threshold Temperature Model for

precipitation phase and the rain/snow transition elevation at the surface in a mountain basin.

O’Harra BF, Kaplan ML, Underwood SJ. 2009: Synoptic climatological analyses of extreme snowfalls in

Journal of Climate, 26 (17): 6679-6697.

Refsgaard JC, Seth SM, Bathurst JC, et al. 1992: Application of the SHE to catchments in India. Part 1:

Qin D, Liu S, Li P. 2006: Snow cover distribution, variability and response to climate change in western

Ren GY, Zhan YL, Ren YY, et al. 2015: Spatial and temporal patterns of precipitation variability over

WMO. 2013: Reducing and managing risks of disasters in a changing climate. WMO Bulletin, 62(Special Issue): 23-31

