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Abstract. Apart from the challenges of runoff prediction in ungauged watersheds around different parts of the world, the direct 

use of river discharges on non-catchment regional studies (i.e.: country scale) also seems to be an unrealistic method that 

requires scientific precautions. Hence, this study intends to estimate the relationship between precipitation and runoff within 

25 major basins and all 55 countries of the African continent. Initially, observed runoff coefficients were estimated from 

monthly runoff (R) data calculated from historical streamflow records provided by the Global Runoff Data Centre (GRDC) 15 

and monthly precipitation (P) datasets from the Global Precipitation Climatology Centre (GPCC) for the period spanning from 

1901 to 2016. Subsequently, the observed runoff coefficients for 535 catchments covering about 47.43% of the whole continent 

were downscaled at 0.5° grid scale based on grids’ direct runoff contributions to their corresponding basins estimated following 

the Natural Resources Conservation Service (NRCS) runoff curve number (CN) approach.  NRCS-CN involves the land use 

and land cover (LULC) information, soil hydrological characteristics, antecedent soil moisture condition (AMC) estimated 20 

according to an antecedent precipitation index (API) and precipitation. Predictions in ungauged basins (PUB) were achieved 

using the inter-gauged and ungauged basin parameter transfer method based on spatial hydrologic similarities. Monthly 

hydrologic similarity’s feature datasets were developed from the key runoff controlling factors, including AMC, CN, terrestrial 

water storage change (TWSC), surface temperature (T), and topographic parameters (topographic wetness index (TWI) and 

slope). The results indicated that 14% of the annual mean P (671.88 mm∙yr-1) became R (94.9 mm∙yr-1), and the remaining 25 

86% (576.98 mm∙yr-1) evapotranspirated over the continent. Spatial analysis reveals that the monthly and annual P-R 

relationship varied significantly among different basins and countries, mainly due to their climatic conditions. Generally, the 

highest runoff depths and runoff coefficients were observed in humid tropical regions associated with higher precipitation 

intensities compared to subtropical and temperate drylands.  
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1 Introduction 

In the 21st century water resources management becomes a major concern to human life and environmental protection 

(Cosgrove and Loucks, 2015). It is well-known that precipitation is the source of freshwater on our planet, and its intensity 

varies from one region to another. Precipitation-to-runoff is the main source of water for rivers, lakes and ocean replenishment 

(Edwards et al., 2015). Water scarcity aggravates poverty to an estimate of 300 million people living in the drylands of Africa 5 

and the number is expected to increase by 65-80% in 2030 (Cervigni and Morris, 2016). By 2050, it is estimated that 40% of 

the global population will be exposed to river basins that experience severe water stress, particularly in Africa and Asia 

(UNISDR, 2015). Droughts further induce severe environment degradation, social conflicts and hunger crisis (Messer et al., 

2001;Clover, 2003). On the other hand, intensive runoffs cause significant damages such as soil erosion, floods, landslides, 

water pollution, and infrastructure destructions (Goudie, 2000;Weng, 2001;Karamage et al., 2017a). For instance, the 10 

population exposed to floods increased from 0.5 to 1.8 million between 1970 and 2010 in Sub-Saharan Africa (UNISDR, 

2011). Water-related problems have far-reaching effects in Africa, where, limited financial funds, sparse hydrological data and 

reliable scientific information bothers sustainable planning and management of water resources and related disasters 

(Oyebande, 2001;Karamage et al., 2016;Urroz et al., 2001).  

Geographical Information System (GIS) has evolved since its introduction in the 1960s, and now becomes a widely 15 

used tool able to deal with multiple variables regarding basin management. However, GIS-based hydrological studies rely 

strongly on databases (Terakawa, 2003). Various runoff-related studies have been carried out with different purposes such as, 

for example, runoff depth estimation at global scale (Hong et al., 2007;Fekete et al., 2002a) (Hong et al., 2007;Fekete et al., 

2002b;Ruess, 2015;Smakhtin, 2004) and water stress assessment at country and global scales (Ruess, 2015;Smakhtin, 2004), 

modelling blue and green water availability in Africa (Schuol et al., 2008) and runoff predictions in different parts of Africa 20 

(Tesemma et al., 2010;Olang and Fürst, 2011;Jaleta et al., 2017;Mahmoud, 2014;Karamage et al., 2017a). However, based on 

our knowledge, there is no available detailed study on the relationship between precipitation and runoff in Africa indicating 

how river discharges available at catchment scale can be downscaled at small unity of land or grid scale which could be utilized 

reasonably to estimate P-R correlation at a non-catchment spatial scales (i.e.: countries, etc.), taking into consideration well-

known key runoff controlling factors such as land use, climate, soil characteristics, etc. Briefly, this study aims at assessing 25 

the relationship between precipitation and runoff within 55 African countries and 25 major drainage basins. As scientific 

contribution, this study highlighted step by step how the Natural Resources Conservation Service (NRCS) runoff curve number 

(CN) can be a prominent proxy for the basin’s river discharge downscaling at a grid scale which can be reasonably utilized on 

the non-catchment regional studies (i.e.: Country scale). Actually, runoff-related studies are often conducted at a drainage basin 

scale, but, hydrological studies on the grid and country scales are very useful at national level since each government has own 30 

policies for water resource management. For instance, it has been noticed that runoff discharges are useful in water stress 

analysis on country scale (Ruess, 2015;Smakhtin, 2004). Integration of NRCS-CN in downscaling the runoff discharges do 

not alter the quantity of observed runoff at a catchment scale, but it redistributes catchment’s discharged runoff volume to its 
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grids proportionally according to their respective climate and physical conditions. NRCS-CN is very useful in various 

hydrological studies mainly in predicting the direct runoff discharges by incorporating the land use and land cover (LULC) 

information, soil hydrological characteristics, antecedent soil moisture condition (AMC) and precipitation (Hawkins, 1993). 

Besides this, the prediction of the P-R relationship in ungauged regions was achieved utilizing the inter-gauged and ungauged 

basin parameter transfer method that was previously recommended in other hydrological studies as a reliable approach for 5 

parameter predictions in ungauged basins (PUB) (Bárdossy, 2007;Blöschl, 2006). Using this method, the gridded observed 

runoff coefficients (Orc) were transferred to ungauged regions according to their hydrologic similarity.  Monthly hydrologic 

similarity’s feature datasets were established from key runoff controlling factors such as: (i) AMC, (ii) NRCS-CN, (iii) 

terrestrial water storage change (TWSC), (iv) land-surface temperature (T), and (v) topographic parameters (topographic 

wetness index (TWI) and slope). The present study developed a unique monthly hydrologic similarity feature dataset with 10 

multiple zones. Each zone is composed by a set of grids with similar climatic and physical characteristics. The runoff 

controlling factors were firstly classified into ranges, converted to non-simplified polygons and stacked together using an 

overlay (intersect) analysis technique (Zhu, 2016) performed with the “intersect tool” available in “overlay tools”, one of the 

“Analysis tools” in ArcMap v.10.5. After that, the mean observed runoff coefficients were transferred to ungauged regions 

employing the “Zonal Statistics as Table Tool” available in “Zonal tool” of the “Spatial Analyst Tools” in ArcMap v.10.5” 15 

where, hydrologic similarity dataset were considered as “Input raster or feature zone data”, and gridded observed runoff 

coefficient as “Input value raster”. Inter-gauged and ungauged basin parameter transfer approach was chosen to be used in this 

study because of its simplicity and reasonable prediction in ungauged regions, yielding the results representing a real-world 

phenomenon occurring in the same region. This method can be considered as one of the hybrid interpolation or gaps filling 

techniques which are very useful in developing various datasets such as temperature, precipitation, soil, etc. 20 

2 Data inputs and Methods 

2.1 Study area 

Africa (Figure 1) is the world’s second-largest continent (≃ 30.3 million km²) accounting for 6% of Earth's surface area and 

20.4 % of land area (Sayre and Pulley, 1999;Mawere, 2017). It is the second-most-populous continent (1,256 million people) 

after Asia (4,504 million people) as of 2017 (UN-DESA, 2017). Statistical computation from the European Space Agency 25 

(ESA) Climate Change Initiative (CCI) land cover (LC) map 2015 (ESA-CCI, 2017) showed that Africa is comprised of forests 

(24.52%), grassland (24.51%), cropland (16.14%), built-up areas (0.16%), wetlands (0.84%), inland water (0.99%), and bare 

areas (32.84%). 
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Figure 1. Hydrological map showing major rivers, lakes, 25 major basins (FAO, 2009) and 55 countries of Africa (GADM, 2015). 

Over 60% of the soil is dominated by hot, arid or immature soil assemblages: Arenosols (22%), Leptosols (18%), Cambisols 

(11%), Calcisols (5%), Regosols (3%) and Solonchacks/Solonetz (2%). Another 20% is characterized by tropical or sub-

tropical features: Ferralsols (10%), Plinthisols (5%), Lixisols (4%) and Nitisols (2%) (Dewitte et al., 2013). Based on the 5 

Climatic Research Unit Timeseries (CRU TS) land-surface temperature datasets (1901 – 2016) (Harris et al., 2014), and the 

GPCC datasets (1901 – 2016) (Markus et al., 2018), the African continent has an overall long-term mean surface temperature 

(T) of 24oC∙yr-1 and mean precipitation (P) of 671.88 mm∙yr-1. Africa has three major climate types including tropical (T = 

25oC∙yr-1; P = 836.36 mm∙yr-1), subtropical (T = 22oC∙yr-1; P = 146.23 mm∙yr-1) and temperate zones (T = 18oC∙yr-1; P = 257.34 

mm∙yr-1). The topography is  characterized  by large-scale   extensional   features   such   as   the   East   African Rift, 10 

anomalously  subsided basins and uplifted domes (Moucha and Forte, 2011). The continent is divided into 25 major 

hydrological basins according to its hydrological characteristics (FAO, 2009). Approximately, 60% of the African continent 
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is drained by 10 large rivers (Congo, Limpopo, Niger, Nile, Ogooue, Orange, Senegal, Shebelle, Volta and Zambezi) and their 

tributaries (Paul et al., 2014). 

2.2 Datasets and Application 

The data were processed and analysed using the Esri ArcGIS software version 10.5, SDMToolbox version 2.2 (Brown et al., 

2017) and Excel VBA (Visual Basic for Applications) (Walkenbach, 2010). Figure 2 demonstrates the conceptual framework 5 

used to analyze the relationship between precipitation and runoff in Africa. 

 

Figure 2. A conceptual framework used for analyzing the precipitation-runoff relationship in Africa. 

2.2.1 Runoff estimation in gauged catchments 

The runoff coefficients over gauged catchments were estimated with two types of data: (1) the monthly time series of river 10 

discharge data for 535 African catchments (Figure 3) discontinuously recorded since 1901 until 2016 were provided by request 

from the Global Runoff Data Centre (GRDC). The GRDC is an international organization based in Germany, a branch of the 

World Meteorological Organization (WMO) that was established in 1988 to support scientific studies on global climate change 

and water resources management (GRDC, 2018), and (2) monthly precipitation datasets acquired from the Global Precipitation 

Climatology Centre (GPCC) Full Data Gridded Monthly Totals Version 2018 (V.8) at 0.5° resolution for the period 1901–15 

ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata-monthly_v2018_doi_download.html
ftp://ftp.dwd.de/pub/data/gpcc/html/fulldata-monthly_v2018_doi_download.html
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2016. GPCC product is a Rain-Gauges built on GTS-based and Historical Data that is operated by the German Weather Service 

(DWD) under the auspices of the World Meteorological Organization (WMO) (Markus et al., 2018). 

 

Figure 3. Distribution of 535 GRDC gauged catchments (covering ≃ 47.43% of the total African continent) and streamflow gauging stations 

(GRDC, 2018) within 25 major basins of Africa (FAO, 2009). 5 

On account of discharge data that were discontinuously recorded which could not allow the possibility of monthly or annual 

accurate trend analysis, the final results of the present study were generated at the long-term monthly and annual mean temporal 

resolution. By following Eq. (1)  (Kadioglu and ŞEN, 2001), a runoff coefficient is estimated as the ratio of mean runoff depth 

to rainfall intensity for each catchment. The monthly runoff coefficients were estimated for each month whenever runoff 

discharge was recorred. Then, all historical monthly coefficients were summed and divided by the number of recorded months 10 

to obtain the long-term monthly average runoff coefficient for each station.  

The annual runoff depth (mm∙yr-1) is the total of monthly runoff depths for all 12 months of a year. The average annual runoff 

coefficient is estimated as the ratio of annual runoff depth (mm∙yr-1) to the annual precipitation intensity (mm∙yr-1). 

𝑂𝑟𝑐𝑏  = 
𝑂𝑟𝑏 

P
                                                                                                                         (1) 

where, Orcb is the basin’s observed average monthly runoff coefficient (dimensionless), Orb is the basin’s observed runoff 15 

depth (mm∙month-1) and P is precipitation intensity (mm∙month-1).  
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The runoff coefficient is usually a suitable proxy to assess the correlation between precipitation and runoff due to its 

absolute capability to indicate the ratio of runoff (R) generated by the total precipitation (P) amount within a catchment 

(Kadioglu and ŞEN, 2001), it has values varying from 0 (low P-R correlation) to 1 (high P-R correlation)  (Blume et al., 2007). 

In addition, runoff coefficient is very useful for rainfall runoff management in different land cover types since it can easily 

identify the ratio of rainwater flowed from each land use type under heterogeneous climate and physical conditions among 5 

different grids of the catchment. It may help to locate areas with high potential runoff risk which require special practices of 

stormwater management (Chen et al., 2007). Higher runoff coefficient values are often observed on impervious surfaces and 

unwell-managed croplands due to their low infiltration capacity compared to other land use classes such for example grasslands 

and forests (Goudie, 2000; Weng, 2001). Areas with low runoff coefficients are those with a relatively higher infiltration and/or 

evapotranspiration (ET) rates. Underground water storage change also plays significant role in runoff generation process 10 

throughout the alteration of soil moisture condition. However, in the long-term annual mean basis of water balance analysis, 

the estimation of terrestrial water storage change provides approximately zero values due to a variety of wet and dry seasons 

(Long et al., 2014). 

2.2.2 Runoff estimation in ungauged catchments 

Runoff coefficients over ungauged regions were estimated using the inter-gauged and ungauged parameter transfer method 15 

based on the hydrologic similarity feature zones established by means of overlay (intersect) technique applied to major runoff 

controlling factors, including AMC, CN, TWSC, T, TWI and slope that were selected among others based on their potential 

effect in runoff generation process as previously revealed by different researchers (Liu and De Smedt, 2004;Bárdossy, 

2007;Yuting et al., 2011;McCabe and Wolock, 2011). Inter-gauged and ungauged parameter transfer method is one of 

acceptable approach for parameter predictions in ungauged Basins (PUB) recommended in different hydrological studies 20 

(Bárdossy, 2007;Blöschl, 2006;Chiew et al., 2018). Several hydrologic models are available and utilized in different projects; 

but, most of them limited either due to their different input parameter requirements, a lot of time required for preparing input 

data, and complexity model setting (Lim et al., 2006). Ungauged regions accounting 52.57% of the total continent of Africa 

seems to be larger extent compared to the recorded catchments (47.43% of African continent) (Figure 3) due to 31% of the 

continent occupied by the desert of Sahara (Cook and Vizy, 2015) where the runoff depths and runoff coefficient is 25 

approximately 0 due to absence of precipitation in this region. The remaining ungauged regions account only 21.57% of the 

total African continent and are distributed in different climatic zones where it is possible to predict their hydrologic conditions 

based on the observed parameters of neighbouring gauged catchments. Using any other model for P-R correlation assessment 

it might be a double task since it would be necessary to calibrate the results using almost the same method of hydrologic 

similarity analysis. 30 
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2.2.2.1 Estimation of direct runoff using the NRCS-CN method 

NRCS-CN is one of the ancient popular and efficient empirical hydrologic approaches adopted by various researchers 

worldwide for water resources planning and assessment, especially estimating the direct rainfall-runoff. It was developed in 

1956 by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) (Cronshey, 

1986;Silveira et al., 2000). This method is easily understandable, simple and useful for direct runoff prediction over ungauged 5 

catchments (Mishra et al., 2006). CN is generally considered as a major input parameter in many hydrologic models such as 

for example the Long‐Term Hydrologic Impact Assessment (L‐THIA) model (Lim et al., 2006),  the Hydrologic Modelling 

System (HEC-HMS) (Engineers, 2008;Halwatura and Najim, 2013), The Chemicals, Runoff, and Erosion from Agricultural 

Management Systems (CREAMS) (Knisel and Douglas-Mankin, 2012), Simulation of Production and Utilization of 

Rangelands (SPUR) model (Wright and Skiles, 1987). NRCS-CN method predicts the Drc and Dr by involving the land use 10 

and land cover (LULC) data, soil hydrological characteristics and antecedent soil moisture condition, according to an 

antecedent precipitation index (API) and precipitation (Cronshey, 1986). The LULC maps (Figure 4) used in this study were 

reclassified from time series of annual global Climate Change Initiative Land Cover (CCI-LC) maps at 300 m spatial resolution 

covering a period of 24 years (1992 –  2015) (ESA-CCI, 2017). 

 15 

Figure 4. A time series of annual land cover maps (ESA-CCI, 2017) of Africa with reclassified 7 classes (1992 – 2015). 
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These land cover maps were originally classified from the landcover imagery captured by five different satellites, including 

the Advanced Very High-Resolution Radiometer (AVHRR), Medium Resolution Imaging Spectrometer Full Resolution and 

Reduced Resolution (MERIS FR and RR), SPOT-Vegetation (SPOT-VGT), Project for On-Board Autonomy, with the V 

standing for Vegetation (PROBA-V), Environmental Satellite-Advanced Synthetic Aperture Radar (ENVISAT-ASAR). The 

CCI-LC map 2015 was validated using the GlobCover map 2009 with two overall accuracy levels of 71.45% and 75.4% (ESA-5 

CCI, 2017). Based on the CCI-LC product manual version 2.0 (ESA-CCI, 2017), we have reclassified all 24 CCI-LC maps 

from the LCCS (Land Cover Classification System) legend to IPCC (Intergovernmental Panel on Climate Change) legend 

(Penman et al., 2003) that are more compatible with the NRCS-CN structure. 

The recent updated dataset of sand, clay, and silt fractions available at ≃ 250 m resolution were downloaded from the 

Africa Soil Information Service (AfSIS) database (Hengl et al., 2015) and used to classify the soil texture dataset of Africa 10 

(Figure 5). Soil texture data were utilized in conjunction with LULC maps (Figure 4) for the development of hydrologic soil 

group (HSG) and CN dataset (Figure 5) following the studies of Yeo et al. (2004) , Cronshey (1986), and Sumarauw and 

Ohgushi (2012) (Table 2). Because the AfSIS data have gaps over the Sahara desert, in this region the soil texture was classified 

from the WorldGrids’ s sand, clay, and silt fractions available at ≃ 1 km spatial resolution (Hengl et al., 2014). Soil texture 

was classified referring to table 1 adapted from the soil textural triangle developed by the United States Department of 15 

Agriculture (USDA) (Fernandez‐Illescas et al., 2001). 

Table 1. Soil texture classes adapted from the USDA’ s soil textural triangle (Fernandez‐Illescas et al., 2001). 

Soil Texture Name Sand (%) Silt (%) Clay (%) 

Sand (Sa) 85 – 100 0 – 15 0 – 10 

Loamy sand (LoSa) 70 – 90 0 – 30 0 –15 

Sandy loam (SaLo) 43 – 80 0 – 50 0 – 20 

Loam (Lo) 23 – 52 28 – 50 7 – 27 

Silty loam (SiLo) 0 – 50 50 – 88 0 – 27 

Silt (Si) 0 – 20 88 – 100 0 –12 

Sandy clay loam (SaClLo) 45 – 80 0 – 28 20 – 35 

Clay loam (ClLo) 20 – 45 15 – 53 27 – 40 

Silty clay loam (SiClLo) 0 – 20 40 – 73 27 – 40 

Sandy clay (SaCl) 45 – 65 0 – 20 35 – 45 

Silty clay (SiCl) 0 – 20 40 – 60 40 – 60 

Clay (Cl) 0 – 45 0 – 40 40 – 100 
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Table 2. LULC classes and their corresponding HSG, soil texture and CN (adapted from (Yeo et al., 2004;Cronshey, 1986;Sumarauw and 

Ohgushi, 2012). 

LULC Soil Texture HSG CN 

Grass Sand, loamy sand, or sandy loam A 35 

 Silt loam or loam B 56 

 Sandy clay loam C 70 

  Clay loam, silty clay loam, sandy clay, silty clay, or clay D 77 

Forrest Sand, loamy sand, or sandy loam A 30 

 Silt loam or loam B 55 

 Sandy clay loam C 70 

  Clay loam, silty clay loam, sandy clay, silty clay, or clay D 77 

Agriculture Sand, loamy sand, or sandy loam A 64 

 Silt loam or loam B 75 

 Sandy clay loam C 82 

  Clay loam, silty clay loam, sandy clay, silty clay, or clay D 85 

Barren Sand, loamy sand, or sandy loam A 77 

 Silt loam or loam B 86 

 Sandy clay loam C 91 

  Clay loam, silty clay loam, sandy clay, silty clay, or clay D 94 

Urban Sand, loamy sand, or sandy loam A 81 

 Silt loam or loam B 88 

 Sandy clay loam C 91 

  Clay loam, silty clay loam, sandy clay, silty clay, or clay D 93 

Wetland Sand, loamy sand, or sandy loam A 0 

 Silt loam or loam B 62 

 Sandy clay loam C 74 

  Clay loam, silty clay loam, sandy clay, silty clay, or clay D 85 

Water  Sand, loamy sand, or sandy loam A 100 

 Silt loam or loam B 100 

 Sandy clay loam C 100 

  Clay loam, silty clay loam, sandy clay, silty clay, or clay D 100 
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Figure 5. Maps of sand, clay, and silt fractions, soil texture, hydrological soil group (HSG) and long-term mean curve number (CN) 

unadjusted by AMC (1992 – 2015). 

Adjusted long-term monthly CN maps (Figure 6) were obtained employing antecedent soil moisture condition (AMC) (Figure 

6) using equations (2) and (3) (Hong et al., 2007;Zeng et al., 2017). 5 

𝐶𝑁𝑖
𝐼 =

𝐶𝑁𝑖
𝐼𝐼

2.281−0.01281 ∗ 𝐶𝑁𝑖
𝐼𝐼                                                                                                                                                       (2) 

𝐶𝑁𝑖
𝐼𝐼𝐼 =

𝐶𝑁𝑖
𝐼𝐼

0.427 − 0.00573 ∗ 𝐶𝑁𝑖
𝐼𝐼                                                                                                                                                    (3) 

CI, CNII, and CIII are corresponding to AMC I (dry), AMC II (normal), and AMC III (wet), respectively, determined utilizing 

total 5-day antecedent precipitation index (API) and season types (dormant or passive and active or growing seasons) (Table 

3) (Silveira et al., 2000;Hong et al., 2007). The glowing season is considered as the active (wet) season with the precipitation 10 

intensity > 100 mm∙month-1, whilst, the passive (dry) season has a precipitation intensity < 100 mm∙month-1 (Murray-Tortarolo 

et al., 2017). 

Table 3. Seasonal rainfall limits for AMC (Silveira et al., 2000;Hong et al., 2007;Mishra and Singh, 2006). 

AMC group 
Total 5-day API (mm) 

Dormant (passive) season Growing (active) season 

I < 13 < 36 

II 13 – 28 36 – 53 

III > 28 > 53 
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Five-day API was estimated using the GPCC Full Data Daily Product V.2018 of daily global land-surface precipitation totals. 

This product is available at a regular latitude/longitude grid with a spatial resolution of 1° and covers the time period from 

January 1982 to December 2016  (Anja et al., 2018). The API was estimated following Eq. (4) (Kohler and Linsley, 

1951;Heggen, 2001). 

API = ∑ 𝑃𝑡 ∗ 𝑘−𝑡−𝑖
𝑡=1                                                                                                                                                    (4) 5 

where, i is the number of antecedent days, Pt is the precipitation amount during day t, and k is a decay constant. It has been 

revealed that k factor is not critical, its values range from 0.85 to 0.90 over most of the eastern and central portions of the 

United States where it was well tested (Kohler and Linsley, 1951), and this study used a value of 0.90 that is recommended 

for the basins without a measured k decay constant (Abdi et al., 2017;Viessman Jr and Knapp, 1977;Heggen, 2001). The 

NRCS-CN method was modified by different researchers depending on the climatic condition of their study area. The most 10 

frequently modified parameter was the initial abstraction coefficient (λ), arguing that  the assumption of the λ = 0.2 in the 

original SCS-CN method seems to be high and suggested that λ with values between 0.01 and 0.05 are more realistic and 

recommended a value of λ = 0.05 (5% of the storage is assumed as the initial abstraction instead of 20%) because it involves 

either both lower CN values and small rainfall amount (Yuan et al., 2014;Beck et al., 2009;Shi et al., 2009;Hawkins, 

1993;Ponce and Hawkins, 1996;Woodward et al., 2003;Lim et al., 2006). Based on these recent studies, our study used an 15 

adjusted SCS-CN equation with a value of λ = 0.05 as demonstrated by Hawkins (1993) with the equations (5), (6) and (7). 

𝐷𝑟 = {  
0                         for 𝑃 ≤  0.05 ∗ 𝑆       

(𝑃 − 0.05 ∗ 𝑆0.05)2

𝑃 + 0.95 ∗ 𝑆0.05
    for 𝑃 >  0.05 ∗ 𝑆           

                                                                                                             (5) 

𝑆0.05 = 1.33 ∗ 𝑆0.20
1.15                                                                                                                                                        (6) 

𝑆0.20 =
2400

𝐶𝑁
− 254                                                                                                                                                              (7) 

where, Dr = the direct runoff (mm), P = rainfall (mm) (Figure 6), S is the maximum potential soil water retention (mm), and 20 

CN is the curve number (dimensionless). Ia = 0.05 ∗ S is the initial abstraction (all losses before runoff begins). Drc = the direct 

runoff coefficient (dimensionless) (Figure 6). S is related to the soil and land cover conditions of the watershed through the 

CN which has a range of 0 to 100 values. 
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Figure 6. Maps of the runoff curve number (CN) adjusted according to antecedent soil moisture condition (AMC), precipitation (P), direct 

runoff depths (Dr) and direct runoff coefficients (Drc). 

2.2.2.2 Downscaling process of the runoff discharges 

Equations (8), (9), (10), (11), (12), (13), and (14) express the process used to downscale the observed runoff coefficients and 5 

runoff depths from basin scaled to 0.5° grid spatial resolution (Figure 7) based on the direct runoff distributions within different 

grids of each gauged catchment. This approach provides google results since the mean of observed gridded runoff coefficients 

and runoff depths equals to the catchment’s average observed runoff coefficients and runoff depths, respectively. 
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𝐷𝑟𝑣𝑔 = 0.001 ∗ 𝐷𝑟𝑔  ∗ 𝐺                                                                                                                                               (8) 

𝐷𝑟𝑣𝑏 = 0.001 ∗ 𝐷𝑟𝑏  ∗ 𝐴                                                                                                                                                (9) 

∅ =
𝐷𝑟𝑣𝑔 ∗ 100

𝐷𝑟𝑣𝑏
                                                                                                                                                             (10) 

𝑂𝑟𝑣𝑏 = 0.001 ∗ 𝑂𝑟𝑏  ∗ 𝐴                                                                                                                                              (11) 

𝑂𝑟𝑣𝑔 =
𝑂𝑟𝑣𝑏 ∗ ∅

100
                                                                                                                                                             (12) 5 

𝑂𝑟𝑔 =
𝑂𝑟𝑣𝑔 

𝐺
∗  1000                                                                                                                                              (13) 

𝑂𝑟𝑐𝑔 =
𝑂𝑟𝑔 

𝑃𝑔
                                                                                                                                                             (14) 

where, (∅) is the percent contribution of each grid’s direct runoff volume (Drvg) in m3∙month-1 to its corresponding basin’s 

direct runoff discharge (Drvb) in m3∙month-1, Drg is the grid’s direct runoff depth (mm∙month-1), Drb is the basin’s average 

direct runoff depth (mm∙month-1), G is the size of a grid in m2, 0.001 and 1000 are the numbers for unities conversion, A is the 10 

drainage area of basin in m2. Orvb is the basin’ s observed runoff discharge (m3∙month-1), Orb is the basin’s observed runoff 

depth (mm∙month-1), Org is the grid’s observed runoff depth (mm∙month-1), Orcg is the grid’s observed runoff coefficient 

(dimensionless), Pg is the grid’s precipitation intensity (mm∙month-1). 

2.2.2.3 Application of inter-gauged and ungauged basin parameter transfer approach 

Overlay (intersect) is one of useful geospatial overlay methods that stacks several different types of dataset with the same 15 

georeferencing system on top of each other in order to assess the relationship between features of each location. Overlay 

method has been used in different applications such as relationship analysis between rainfall distribution and elevation, 

examination of environmental sensitivity based on slope, surface drainage, soil erosion and other environmental parameters 

(Zhu, 2016). This method was applied to the present study in order to establish a unique zonal feature dataset that combines 

together a set of important physical-climate variables which control the runoff (AMC, CN, TWSC, T, and TWI and slope). 20 

Each intersection of these variables falls within gauged and ungauged grids at the same time, here immediately ungauged grids 

receive an average of observed runoff coefficient locating within the same intersection. This operation was achieved using the 

“Zonal Statistics as Table Tool” available in the Spatial Analyst Tools of the ArcMap v.10.5” where, hydrologic similarity’s  

zonal feature dataset were considered as “Input raster or feature zone data”, and downscaled observed runoff as “Input value 

raster”. 25 

The hydrological similarity analysis involved AMC (Figure 6) based on its potential capability to separate the drying and 

wetting areas, whilst CN (Figure 6) helps to recognize the effect of land use and soil characteristics in runoff generation 

process. According to the water balance budget, during the rainy seasons water soaks into pervious ground and once filled in 
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soil porosities starts to flow into rivers and lakes resulting in an increased level of underground water (acquirers) and surface 

water reservoirs (rivers, lakes and oceans); in impervious surface rainwater flow forward immediately into surface water 

reservoirs. Accumulation of water infiltrations improves soil moisture condition and boosts the rate of runoff depths while, a 

declining water storage phenomenon leads to lower amount of runoff discharge (Edwards et al., 2015). Apart from the natural 

cause of water storage change fluctuations (i.e.: rainfall and evapotranspiration), human activities (i.e.: water storage for 5 

hydropower generation and its release, irrigation, water consumption, etc.) also affect the change of water storage and as well 

river discharge volume. However, the change of water storage is generally controlled by climate and seasons patterns more 

than human factors (Edwards et al., 2015).  

In order to incorporate the effect of water storage change in hydrologic similarity analysis, this study used the long-term 

monthly terrestrial water storage change (Figure 7) computed from the Center for Space Research (CSR) Gravity Recovery 10 

and Climate Experiment (GRACE) RL05 mascon solutions available at 1o resolution for the period starting from April 2002 

to June 2016. The Gravity Recovery and Climate Experiment (GRACE) mission was launched in March 2002 under the NASA 

Earth System Science Pathfinder (ESSP) Program. GRACE is jointly implemented by the US National Aeronautics and Space 

Administration (NASA) and German Aerospace Center (DLR) (Save et al., 2016).  

The land-surface temperature also plays a big role in water balance where, hot regions are often characterized by higher 15 

evapotranspiration rates compared to cold or temperate regions. The long-term monthly land-surface temperature (Figure 7) 

used in this study was calculated from the 4.01 release of the CRU TS (Climatic Research Unit Timeseries) dataset spanning 

a period of 116 years (1901 – 2016) (Harris et al., 2014). This dataset was developed, subsequently updated, improved and 

maintained with support from a number of funders, principally by the UK's Natural Environment Research Council (NERC) 

and the US Department of Energy. Long-term support is currently provided by the UK National Centre for Atmospheric 20 

Science (NCAS), a NERC collaborative center (Harris et al., 2014). 

The topography also acts on water flow movement and infiltration; where higher runoff depths are mostly found in regions 

with steep slopes more than areas with flat and gentle slopes (Ogden et al., 2011). Sometimes, digital elevation model (DEM) 

is used directly as a parameter that represents the impact of the surface shapes and feature on the hydrological process (Xiao 

et al., 2017). The dataset of topographic wetness index (TWI) that is also called the Compound Topographic Index (CTI) was 25 

developed by Beven and Kirkby (1979) within the runoff model TOPMODEL due to the effect of topography on soil moisture 

(BEVEN and Kirkby, 1979). TWI (Eq. 15, 16 and 17) that combines local upslope contributing area and slope is commonly 

used to quantify topographic control on hydrological processes. Higher TWI values represent drainage depressions which are 

often wet and associated with greater runoff depths compared to crests and ridges relatively with the lower TWI values and 

dry surfaces that suck a lot of water amount before the beginning of water flow process (Liu et al., 2015;Sörensen et al., 30 

2006;Xiao et al., 2017). TWI and slope parameters (Figure 7) derived from the HydroSHEDS datasets at 15 arc-second 

resolution (Lehner et al., 2008) were incorporated in the hydrologic similarity analysis of this study in order to separate areas 

with different topographic features. 
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𝑇𝑊𝐼 = ln (
𝛼

𝑡𝑎𝑛 𝛽
)                                                                                                                                                                          (15) 

𝛼 = (𝑓 + 1) ∗ 𝐺                                                                                                                                                                               (16) 

𝛽 = (𝑚 ∗ (𝜋/2)/90                                                                                                                                                                        (17) 

where, α is the upslope area draining through a certain point per unit contour length and β is the slope in radians, f is the flow 

accumulation calculated from the flow direction that is generated in DEM (meter unity), G is the cell size in m2, m is the slope 5 

in degrees, π is pi equals to 3.141592. 
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Figure 7. Estimated runoff coefficients and runoff depths based on gridded observed runoff coefficients transferred using inter-gauged and 

ungauged parameter transfer approach, according to hydrological similarity feature dataset resulted from an overlay (intersect) of the runoff 

controlling factors (AMC, CN (Figure 6), TWSC, T, TWI, and slope). 
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3 Results 

Figure 8 presents the final resultant maps obtained by means of the methods above-described in sections 2.2.1 and 2.2.2. 

Gridded long-term monthly and annual mean runoff coefficients (RC), precipitation (P), and runoff depths (R) were developed 

at 0.5° spatial resolution (1901 to 2016) and utilized to generate zonal statistics at the continental level (Figure 9 and 10), 

within 25 major basins (Figure 11), 55 countries of Africa (Figure 12) and as well latitudinal profile (Figure 14 and Table 4). 5 
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Figure 8. Maps of long-term mean monthly and annual runoff coefficients, precipitation and runoff depths (1901 – 2016). 

3.1 Precipitation-runoff relationship over the continent of Africa 

Zonal statistical analysis at continental level revealed that the runoff (94.9 mm∙yr-1) counts 14% of the long-term 

mean precipitation (671.88 mm∙yr-1) and evapotranspiration (576.98 mm∙yr-1) comprises the remaining 86% of total long-term 5 

average rainfall amount (Figure 9). 

 

Figure 9. Long-term average annual water balance of Africa (1901 – 2016). 

Assessment of the long-term monthly rainfall-runoff relationship revealed that the continent of Africa experienced 

the highest and lowest long-term mean precipitation intensities of 70.47 mm∙month-1 and 44.13 mm∙month-1 in August and 10 

June, respectively. The greatest and smallest long-term mean runoff depths of 11.20 mm∙month-1 and 5.19 mm∙month-1 are 
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observed in September and June, respectively. Figure 10 illustrates that the greatest rainfall-runoff correlation is recorded in 

October with the Rc = 0.19, while the lowest Rc = 0.11 is observed in July whenever P = 57.36 mm∙month-1 and R = 6.23 

mm∙month-1 (Figure 10). 

 

Figure 10. Long-term monthly precipitation-runoff relationship over the African continent (1901 – 2016). 5 

3.2 Precipitation-runoff relationship within 25 major African basins 

Figure 11 compares the long-term mean monthly and annual precipitation, runoff depths, runoff coefficients and long-

term mean annual evapotranspiration within 25 major African basins (1901 – 2016). Top seven tropical basins out of 25 major 

African basins that comprised the highest runoff depths > 100 mm∙yr-1 are: Gulf of Guinea (594.35 mm∙yr-1), Madagascar 

(330.59 mm∙yr-1), Congo (302.28 mm∙yr-1), Africa-West Coast (278.76 mm∙yr-1), Africa-East Central Coast  (159.20 mm∙yr-10 

1), Africa-Indian Ocean Coast (147.63 mm∙yr-1), and Angola-Coast (111.32 mm∙yr-1). Apart from the Volta and Zambezi basins 

that also have a relatively high precipitation of 1,028.56 and 917.16 mm∙yr-1, the above-mentioned basins also comprised of 

highest long-term annual rainfall intensities among others, ranging from 873.71 mm∙yr-1 to 1,854.64 mm∙yr-1, and are amongst 

basins with the strongest correlation between rainfall and runoff compared to others with a mean runoff coefficient ranging 

from 0.12 to 0.32. The basins with weak precipitation-runoff relationship indicates higher ET ratios. Figure 11 also illustrates 15 

the details about monthly precipitation-runoff relationship within 25 major basins of Africa. 
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Figure 11. Precipitation-runoff relationship within 25 major basins of Africa (1901 – 2016). 
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3.3 Precipitation-runoff relationship within 55 African countries 

Figure 12 correlates the long-term mean monthly and annual P, R and RC and long-term mean annual ET during 1901 

– 2016 in 55 countries of Africa. P ranges from 16.54 mm∙yr-1 to 2,788.90 mm∙yr-1; R ranges from 0.11 mm∙yr-1 to 889.78 

mm∙yr-1, in Egypt and Sierra Leone, respectively; Rc ranges from 0.004 in Western Sahara to 0.387 in Gabon. It should be 

noticed that, with highest runoff depths > 200 mm∙yr-1, Sierra Leone, Equatorial Guinea, Gabon, Guinea-Bissau, Republic of 5 

Congo, Cameroon, Liberia, Comoros, Seychelles, Democratic Republic of the Congo, Madagascar, São Tomé and Príncipe, 

Mauritius, Burundi, Guinea, and Rwanda are ranked among the top 16 out of 50 countries that experiences a relatively strongest 

rainfall-runoff correlation with runoff coefficients range from 0.18 to 0.32. For comparative illustration of the long-term 

average monthly precipitation, runoff and runoff coefficients between 55 countries of Africa, see Figure 12. 
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Figure 12. Precipitation-runoff relationship within 55 countries of Africa (1901 – 2016). 

4 Discussions 

The streamflow and rain gauging stations are known as a trustable source of reliable data for different hydrological studies 5 

(Urroz et al., 2001), but the GRDC river discharge data are available with temporal and spatial gaps mostly in low income 

regions including African countries (Figure 13). Obviously, trends in hydrological process are mainly associated with historical 

climate changes, land-cover change, reservoir storage changes, hydropower releases, and irrigation abstractions which are 

known to be the primary changing factors affecting the amount of rainwater flow over time (Fekete et al., 2002a). Except, the 

precipitation datasets available for the since the beginning of 20st century, even before, the other above-mentioned changing 10 

runoff controllers are available for the recent decades (i.e.: GRACE data for water storage change analysis were collected since 

2002 and good quality land cover maps are available since 1990s). Lack of these data for the earlier decades constrained us to 
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predict the past runoff process. Again, if the earlier runoff discharges are excluded from the long-term runoff calculations, 

spatial gaps would be increased and bring more challenge for validation. 

 

Figure 13. Historical gauged extent and number of operational stations in Africa (1901 – 2016). 

A 75.64% of the total observed extent comprise the river discharges with a record of more than 20 years (Figure 3). The 5 

scarcity of runoff discharge data is common limitation in runoff prediction at a large extent such as continental scale, but they 

can provide reasonable results that represent the real world phenomenon (Loucks et al., 2005). Pre-analysis of the historical 

changes in annual runoff discharges suggested a linear trend varies between 10% and 40% among the stations which drain the 

catchments covered by a small extent (8.44% total gauged area). Indeed, a large proportion (91.56%) of the total African 

gauged area, including the catchments recorded in earlier to recent decades has stations that experienced a minor variance 10 

ranging from 0% to 10% which is not a major problem in long-term bases analysis of runoff estimation.  

Actually, runoff-related studies are often conducted at a drainage basin scale, but, hydrological studies at the grid and 

country scales are very useful at national level since each government has own policies for water resource management. 

Utilization of average basin estimates directly at a country level or any other non-catchment locality seems to be unrealistic. 

This is the reason why this study highlighted the process  of downscaling the basin’ observed runoff discharges based on grids’ 15 

direct runoff contributions to their corresponding basins which helps to include the effect of major runoff controlling factors 

(i.e.: land cover types, soil characteristics, moisture conditions and precipitation intensities) within different grids sharing the 

same catchment according to the Natural Resources Conservation Service (NRCS) runoff curve number (CN) method. Even 

though, the runoff generation process is governed by several environmental factors, but they don’t have the same sensitivity 

and it is still too complicated to incorporate all of them in existing runoff models and methods. In this study, additional factors 20 

to those ones utilized in NRCS-CN were considered in fact that there is a considerable dissimilarity of hydrological conditions 

between separate catchments rather than the grids connected each other within the same catchment. It should be noticed that, 

the integration of NRCS-CN in downscaling the runoff discharges do not alter the quantity of observed runoff at a catchment 

scale, but it redistributes catchment’ discharged runoff volumes to their grids according to their respective climate and physical 

conditions. Some runoff controlling factors such as temperature, topography, etc., are not amongst inputs of the NRCS-CN-25 
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based direct runoff prediction, but they also have minor sensitivity a catchment or grid scale with coarse resolution. Runoff 

discharges were downscaled at 0.5o grid spatial resolution to allow their application at country analysis and facilitate their 

utilization on estimation over ungauged regions. Gridded observed runoff coefficients were transferred to ungauged areas 

using inter-gauged and ungauged parameter transfer approach. This is a Geo-spatial analysis technique acceptable for 

hydrological predictions in ungauged basins (PUB) (Bárdossy, 2007;Blöschl, 2006). This method assumes that two separate 5 

catchments can have a similar hydrological process when they have the same range of climatic and physical conditions. Once 

one of these catchments is observed it can be a source of data to unobserved one. Hydrologic similarity conditions were 

investigated using the runoff controlling factors selected based on their potential impact highlighted in previous studies. Thus, 

the efficiency analysis of the approach used to predict the data for filling the gaps suggested that the estimated and observed 

runoff coefficients have the goodness of fit (R2) ranging from 0.56 to 0.67 for the long-term monthly Rc and 0.78 for the annual 10 

mean Rc (Figure 14). These results are within permissible validity limits since an R2 > 0.5 is considered acceptable for 

calibration and validation in hydrological modelling (Santhi et al., 2001;Van Liew et al., 2003). 

 

Figure 14. Scatter plots with a best - fit line indicating the efficiency of predicted runoff coefficients vs. gridded observed runoff coefficients 

over the gauged regions of Africa (Figure 7). 15 

It can be concluded that inter-gauged and ungauged basin parameter transfer based on hydrologic similarity is an alternative 

approach for gaps filling in runoff prediction and it can even perform much better if the input observed runoff discharges do 

not have a lot of temporal gaps.  
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Furthermore, the study conducted by the University of New Hampshire-Global Runoff Data Centre (UNH-GRDC): 

“high‐resolution fields of global runoff combining observed river discharge and simulated water balances” that has been 

considered as reference to validate the runoff-related hydrological studies since the beginning of 21st century (Fekete et al., 

2002b;Hong et al., 2007) was compared with the current study based on the latitudinal zones at 1° interval scale (Figure 15). 

This analysis indicates that the long-term annual mean rainfall (1920 – 1980) version 2.01 (Willmott_C_J_et_al1998, 5 

1998;Fekete et al., 2002b) that was utilized to simulate the UNH/GRDC composite runoff (Fekete et al., 2002b) is roughly 

matching with the long-term  (1901 – 2016) mean annual GPCC precipitation estimated in the current study (Figure 15). Our 

comparative analysis also shows better agreements over the northern hemisphere between 36oN and 14oN, in the southern 

hemisphere between 17oS and 34oS latitudes, and in the equatorial zone laying between 4oN and 8oS. Major differences are 

between 14oN and 4oN in the northern hemisphere and in the southern hemisphere between 8oS and 17oS latitudes. These 10 

differences are possibly due to the UNH/GRDC method that assigned the same runoff depths in observed and unobserved 

basins that led to overestimation of the runoff in drylands of Australia and Africa and gridded runoff depth that was estimated 

by considering rainfall factor alone (Fekete et al., 2002). The latitudinal profile analysis revealed that on the 2oS latitude is the 

runoff hotspot region of Africa with  higher mean R depth (387.65 mm∙yr-1) and P (1,422.77 mm∙yr-1), and a relatively strongest 

P-R correlation with Rc of 0.27, followed by the 1oS latitude zone with the R of 383.87 mm∙yr-1, P of 1,504.47 mm∙yr-1, and 15 

Rc of 0.26, and as well equatorial zone at 0o latitude with a mean R of 379.99 mm∙yr-1, P of 1,490.18 mm∙yr-1, and Rc of 0.25. 

  

Figure 15. Comparison of the precipitation-runoff relationship between the UNH-GRDC (Fekete et al., 2002b) and the present study. 

Based on the following six latitudinal climate zones northern (N) tropical (0°Equator ≤ latitude ≤ 23.4°N), southern (S) tropical 

(23.4°S ≤ latitude < 0°Equator), N subtropics (23.4°N ≤ latitude ≤ 30°N), S subtropics (23.4°S ≤ latitude ≤ 30°S), N temperate 20 
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(30°N < latitude ≤ 72°N), and S temperate (30°S < latitude ≤ 72°S) (Peel et al., 2007), the long-term annual mean of the water 

balance’s variables, including precipitation (P), evapotranspiration (ET), runoff (R) and their corresponding runoff coefficients 

(Rc) for the period of 116 years (1901 – 2016) were estimated and presented in Table 4 to provide tangible statistics 

corresponding to Figure 15. 

Table 4. Long-term annual water balance and runoff coefficients within the African latitudinal climatic zones (1901 – 2016). 5 

Latitudinal climatic zones % area Africa P (mm∙yr-1) ET (mm∙yr-1) R (mm∙yr-1) Rc 

Tropical 75 836.36 713.70 122.66 0.15 

N tropical 48 708.94 615.72 93.22 0.13 

S tropical 26 1,070.13 893.45 176.68 0.17 

Subtropics 17 146.23 138.03 8.20 0.06 

N subtropical 13 28.35 28.22 0.13 0.00 

S subtropical 5 455.27 425.91 29.36 0.06 

Temperate zones 8 257.34 236.94 20.40 0.08 

N temperate 6 207.51 193.79 13.72 0.07 

S temperate 2 423.94 381.21 42.73 0.10 

Compared to the tropical zone, subtropical and temperate zones of Africa have low rainfall and runoff amounts 

(Figure 15 and Table 4), which may expose them to the water scarcity (Maliva and Missimer, 2012). The countries and basins 

located in the tropical zone are often prone to a higher precipitation intensity which produce huge runoff volumes enough for 

underground and surface water replenishment, however, some time causing stormwater-related disasters (Ponette-González et 

al., 2015;Karamage et al., 2017b). 10 

5 Conclusions 

This study has highlighted step by step how the Natural Resources Conservation Service (NRCS) runoff curve number (CN) 

can be a prominent proxy for the basin’s river discharge downscaling at a grid scale which can be reasonably utilized on non-

catchment regional studies. This approach helped us to produce gridded long-term monthly runoff depths and coefficients 

datasets used to analyze the spatial relationship between precipitation and runoff over all 55 countries and 25 major drainage 15 

basins covering the whole continent of Africa. The Global Runoff Data Centre (GRDC)’s streamflow records available for 

535 catchments covering ≃ 47.43% of the total African continent became a source of information for predicting the P-R 

correlation over ungauged regions based on the inter-gauged and ungauged parameter transfer approach and spatial hydrologic 

similarity analysis assed using the key runoff controlling factors including antecedent moisture condition (AMC), NRCS-CN, 

terrestrial water storage, temperature, topographic wetness index (TWI), and slope. Both higher runoff depths and strong P-R 20 

correlation were observed in the tropical humid regions due to their intensive precipitation more than in subtropical and 
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temperate zones. This study suggests the need for rehabilitation awareness of operational stream gauging stations and 

establishment of new ones where they are necessary to make sure streamflow are regularly and widely recorded in different 

catchments of Africa to provide sufficient update data required for accurate water resource planning. 
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