Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year 4.819
  • CiteScore value: 4.10 CiteScore 4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H index value: 99 Scimago H index 99
Discussion papers
https://doi.org/10.5194/hess-2018-541
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2018-541
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 29 Oct 2018

Research article | 29 Oct 2018

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Hydrology and Earth System Sciences (HESS).

Quantifying streamflow and active groundwater storage in response to climate warming in an alpine catchment on the Tibetan Plateau

Lu Lin1,2, Man Gao3, Jintao Liu1,2, Xi Chen1,2,3, and Hu Liu4 Lu Lin et al.
  • 1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People’s Republic of China
  • 2College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People’s Republic of China
  • 3Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, People’s Republic of China
  • 4Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Lanzhou 730000, People’s Republic of China

Abstract. Climate warming is changing streamflow regimes and groundwater storage in cold alpine regions. In this study, a headwater catchment named Yangbajain in the Lhasa River basin on the Tibetan Plateau is adopted as the study area for quantifying streamflow changes and active groundwater storage in response to climate warming. The catchment is characterized by alpine glacier and frozen ground which covers about 11% and 86% of the total area, respectively. The changes in streamflow regimes (including quickflow and baseflow) and climate factors are evaluated based on hydro-meteorological observations from 1979 to 2013. Then active groundwater storage in autumn and early winter is quantified by recession flow analysis assuming nonlinearized outflow from aquifers into streams. The results show that annual streamflow increases significantly at a rate of about 12.30mm/10a during this period. The significant increase of annual air temperature compared with nonsignificant variation of annual precipitation indicates that the climate warming takes responsibilities to the increase of streamflow. It is believed that the increased streamflow is mainly fed by glacier meltwater, which has led to over 25% loss of the total glacial volume in the past 50 years (1960–2009) in this catchment. Moreover, the significant increase of annual baseflow at a rate of about 10.95mm/10a is the dominant factor for the increase of the total streamflow. Through recession flow analysis, we find that recession coefficient K and active groundwater storage S in autumn and early winter increase significantly at the rates of about 7.70 (mm0.79d−0.21)/10a and 19.32mm/10a during these years. The increase of active groundwater storage can partly be explained by frozen ground degradation, which lead to the enlargement of groundwater storage capacity and accommodate more summer rainfall and meltwater in the wide and flat valley, and then slowly release them into streams in the following seasons. Thus, it is reasonable to attribute the increase of baseflow and the slowdown of baseflow recession process in autumn and early winter to the enlargement of groundwater storage capacity. Through quantifying streamflow changes and active groundwater storage in response to warming-induced changes, this study provides a perspective to clarify the way of glacial retreat and frozen ground degradation on hydrological processes.

Lu Lin et al.
Interactive discussion
Status: open (until 24 Dec 2018)
Status: open (until 24 Dec 2018)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Lu Lin et al.
Lu Lin et al.
Viewed  
Total article views: 234 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
190 42 2 234 2 4
  • HTML: 190
  • PDF: 42
  • XML: 2
  • Total: 234
  • BibTeX: 2
  • EndNote: 4
Views and downloads (calculated since 29 Oct 2018)
Cumulative views and downloads (calculated since 29 Oct 2018)
Viewed (geographical distribution)  
Total article views: 234 (including HTML, PDF, and XML) Thereof 234 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 19 Nov 2018
Publications Copernicus
Download
Short summary
In the paper, recession flow analysis assuming nonlinearized outflow from aquifers into streams was used to quantify active groundwater storage in a headwater catchment with larger glacierization and large-scale frozen ground on the Tibetan Plateau, which provides a perspective to clarify the way of glacial retreat and frozen ground degradation on hydrological processes. We are very grateful to all editors and reviewers for their efforts to help us improve the quality of the manuscript.
In the paper, recession flow analysis assuming nonlinearized outflow from aquifers into streams...
Citation
Share