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Abstract. For rainfall-induced landslides, their occurrence is attributed to both the antecedent wetness condition and the recent 

rainfall condition. However, when defining thresholds for landslide occurrences, these two types of information have been 

used incompletely or implicitly, which may affect the threshold's predictive capability. This study aims to investigate how to 

make a better use of these two types of information in the landslide threshold definition. Comparative study is carried out 10 

among four types of landslide thresholds. By including different variables that are responsible for landslide occurrences, these 

thresholds could represent different cases, like whether to include the antecedent wetness information or whether to consider 

the recent rainfall condition explicitly. The predictive capability of these thresholds is then compared crossly with the help of 

the receiver operating characteristic (ROC) approach. We carry out this study in a northern Italian region called Emilia-

Romagna. Results show that the false positives could be reduced by incorporating the antecedent wetness information in the 15 

threshold definition. It is beneficial for the threshold's predictive capability to explicitly consider the antecedent wetness 

information and the recent rainfall. When including soil moisture information in landslide threshold, the reliability of the soil 

moisture measurement is a key factor affecting the threshold's prediction performance. These results complement the 

exploration on hydro-meteorological thresholds for landslide occurrence, benefiting its development in landslide early 

warnings.  20 

1 Introduction 

Landslides are one of the most frequent and widespread natural hazards, posing threat to human lives and local infrastructures. 

These threats increase with the continuous development in the mountain areas. Landslide alerts or early warnings are able to 

provide useful information for disaster managers and emergency planners to mitigate the related socio-economic risk (Keefer 

et al., 1987;Jakob et al., 2006;Mirus et al., 2018b).  25 

 

The occurrence of landslides is a result of multiple factors, such as rainfall, snowmelt, earthquakes, human activities, etc. 

Among these factors, rainfall is the most common driving force. Rainfall-induced landslides are typically due to the increase 

of the negative pore-water pressure which decreases the shear strength of the soil and leads to the slope failures. This type of 

landslide usually follows a long period of the wet condition and then triggered by intense rainfall. Given rainfall could be seen 30 
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as a good proxy for both the antecedent wetness condition and the recent rainfall condition, it is widely used to derive the 

threshold for landslide occurrence based on an empirical approach. Generally, two features of the rainfall event are identified 

and labelled with landslide occurrence or non-occurrence. Hereafter, a line or zone is derived to separate rainfall events 

inducing landslides from those without landslide hazards. The separation line or zone can be determined visually (Caine, 1980) 

or by some statistical methods, like the method based on Bayesian inference (Guzzetti et al., 2007a;Guzzetti et al., 2007b) and 5 

the frequentist approach (Brunetti et al., 2010). The most common variables used to characterize rainfall events are rainfall 

intensity-duration (ID) and cumulated event rainfall-rainfall duration (ED). Various rainfall thresholds for landslide 

occurrences have been proposed and applied (Peruccacci et al., 2012;Segoni et al., 2014;Gariano et al., 2015;Peruccacci et al., 

2017;Guzzetti et al., 2007a;Guzzetti et al., 2007b). Although these thresholds are the main tool in landslide early warning 

systems, their shortcomings are frequently recognized and discussed. For example, the information of the antecedent wetness 10 

or the recent rainfall is not explicitly considered in setting the threshold. When deriving rainfall thresholds, the rainfall events 

responsible for landslides have a duration ranging from one day to a few months. For rainfall events with short durations, they 

are likely to neglect the information of the antecedent wetness. As for the rainfall event with long durations, although it 

implicitly includes the antecedent wetness information, it is not able to reflect the real causal relationship between rainfall 

events and landslides, because in this case, there may be an intensity peak, which is the real trigger of landslides, preceded by 15 

a rainfall period which predisposes the slope to failure (Bogaard and Greco, 2018). However, the intensity calculated based on 

such a long period flattens the intensity peak, ignoring the role of the rainfall trigger.  

 

To more explicitly take into account the antecedent wetness condition and the recent rainfall, several attempts have been 

proposed to derive the hydro-meteorological thresholds, which are based on the concept that the landslide occurrence is 20 

attributed to both the antecedent wetness condition (hydrological information) and the final rainfall trigger (meteorological 

information). They incorporate measures of the antecedent wetness condition into the definition of thresholds. In some 

landslide early warning systems, the antecedent cumulated rainfall over a certain period is calculated to characterize the 

antecedent wetness condition, which is used together with the recent rainfall amounts to derive the thresholds. For example, 

Chleborad et al. (2008) and Scheevel et al. (2017) made use of the recent 3-day rainfall and the antecedent 15-day rainfall to 25 

define the threshold, while Lee and Park (2015) considered the recent daily rainfall and the antecedent 3-day rainfall 

information. Besides the antecedent cumulated rainfall,  Glade et al. (2000) employed an Antecedent Precipitation Index (API) 

to describe the antecedent wetness condition, which could take the loss of the antecedent rainfall into consideration. In addition 

to the use of rainfall information, some direct measures or proxies for the antecedent wetness condition were also explored 

(Crozier, 1999;Godt et al., 2006;Ponziani et al., 2012;Gabet et al., 2004). Mirus et al. (2018b) and Mirus et al. (2018a) 30 

accounted for the antecedent wetness condition with direct subsurface hydrological measurements, which are then combined 

with the rainfall information to define the threshold for landslides. The derived thresholds show improved performances in 

landslide alert systems. The catchment storage is also regarded as a source of information on the antecedent wetness condition. 

Ciavolella et al. (2016) included the catchment storage in the definition of landslide thresholds in a catchment in the northern 
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Apennines (Italy). The hydro-meteorological threshold based on event rainfall and catchment specific storage performs slightly 

better than the rainfall intensity-duration threshold. Segoni et al. (2018) substituted the antecedent rainfall accumulated over 

long periods with the soil moisture thresholds in the rainfall thresholds of the regional-scale landslide early warning system. 

A back analysis demonstrated this approach is able to reduce false alarms and missed alarms. These examples all explicitly 

consider the antecedent wetness condition and the recent rainfall when defining the thresholds for rainfall-induced landslides. 5 

There are other studies integrating the antecedent wetness condition and the recent rainfall into one variable. Zhuo et al. (2019) 

used the remotely sensed soil moisture prior to landslides to include these two types of information and proposed the soil 

moisture thresholds for landslides under different environmental conditions (land cover, soil type and type). The thresholds 

proposed by the published studies consider the antecedent wetness condition and (or) the recent rainfall condition implicitly 

or explicitly. However, to the authors' knowledge, such studies lack a more thorough analysis of the role the antecedent wetness 10 

condition and the recent rainfall in the landslide occurrence and their usage in the threshold definition, though their importance 

is stressed in a series of works (Ciavolella et al., 2016;Bogaard and Greco, 2018;Mirus et al., 2018a;Mirus et al., 2018b). 

 

Therefore, this study aims to explore how to make a better use of the antecedent wetness information and the recent rainfall 

information in the definition of landslide thresholds. The first objective is to investigate the role of the antecedent wetness 15 

information in landslide threshold definition, and the second one is to answer whether it is necessary to explicitly consider the 

antecedent wetness condition and the recent rainfall when defining thresholds for landslides? As for the role of the antecedent 

wetness information in the landslide threshold, its importance has been widely recognized (Godt et al., 2006;Ponziani et al., 

2012;Segoni et al., 2018;Mirus et al., 2018a;Mirus et al., 2018b). In our recent work (Zhao et al., 2019), this issue is also 

explored by proposing probabilistic thresholds for landslide occurrence, which could integrate soil moisture conditions with 20 

rainfall thresholds. The probabilistic thresholds advance the predictive capability of the rainfall threshold, indicating the crucial 

role of the antecedent soil moisture condition. Despite this, the direct contribution of the antecedent wetness information to 

the improved predictive capability remains unexplored, which is the focus of this study. In order to address these two issues, 

four types of thresholds are proposed. Through including different variables that are responsible for landslide occurrences, 

these thresholds could represent different cases, like whether to include the antecedent wetness information or whether to 25 

consider the recent rainfall condition explicitly. The predictive capability of these thresholds is compared crossly with the help 

of the receiver operating characteristic (ROC) approach. Here the wetness condition is characterized by the Antecedent 

Precipitation Index (API) due to its simple formulation and low requirement for data. We carry out this study in a northern 

Italian region called Emilia-Romagna, where the landslide records and hydrometeorological data are abundant and available.  

 30 

This paper is organized as follows. Section 2 introduces the study area and data sources. Section 3 details the methods used in 

this study. The results are described in Section 4, followed by further discussions and limitations in Section 5. In the final 

section, we outlined the conclusions and future works.   
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2 Study Area and Data Sources 

2.1 Study Area 

Emilia-Romagna region is located in the north of Italy and is one of the most fertile and productive regions in the country. 

Bordered to the north by the River Po and to the south by the Apennine Mountains, the area is characterized by mountains in 

the southern and western portions and wide plains in the northern and eastern parts. The mountainous areas are occupied by 5 

the fold and trust belt of the Apennines, with the maximum altitude as 2165m (Figure 1a). This study focuses only on the 

mountain areas because they are extremely prone to landslides. The studied area has a typical Mediterranean climate: warm 

and dry summers and cool and wet winters.  

 

The studied area suffers from a wide variety of landslide topologies, with the rainfall-induced landslides most common 10 

(Martelloni et al., 2012). Two kinds of rainfall are often associated with landslide events: the short but intense rainfall is likely 

to trigger shallow landslides, and deep-seated landslides are mainly influenced by the moderate but prolonged periods of 

rainfall (Ibsen and Casagli, 2004). Although landslides are not usually deadly, they are destructive. When landslides occur, the 

private and public properties, facilities and infrastructures are always exposed to the hazards, associated with the large cost of 

the regeneration and remedial works. Berti et al. (2012) mentioned that this kind of cost reached €130 million for 4 years from 15 

2008 to 2012 in the Emilia-Romagna region. The abundance of landslides, as well as the availability of the required data, 

makes this region a good site to carry out this study. 

2.2 Data Sources 

The data used for the threshold definition includes daily rainfall, daily average temperature and daily soil moisture data. The 

daily rainfall is used to calculate the Antecedent Precipitation Index (APIv1) and the cumulated rainfall prior to landslide 20 

occurrences. The temperature and soil moisture information together with the daily rainfall are for the calculation of a modified 

Antecedent Precipitation Index (APIv2), which will be detailed in the following section. We collected all these data from 

ARPAE-ER (Regional Agency for the Prevention, Environment and Energy of Emilia Romagna), who maintains a hydro-

meteorological network in the Emilia-Romagna region. This hydro-meteorological network could provide various data at 

different temporal scales, such as rainfall, air temperature, wind speed, relative humidity, etc. All these data can be obtained 25 

online (http://www.smr.arpa.emr.it/dext3r/). The rainfall and temperature data used in this study is from 50 weather stations, 

whose location is marked with the red triangle in Figure 1b. As for the soil moisture data, only the soil water content (m3/m3) 

at 10 cm soil depth of San Pietro Capofiume site is applied, due to its long-term records. The location of this site is marked 

with the yellow star in Figure 1b.  

 30 

Our landslide inventory is provided by the Emilia-Romagna Geological Survey, who is responsible for maintaining a catalogue 

of historical landslides in the Emilia-Romagna region. The basic information recorded in the catalogue includes the landslide 

http://www.smr.arpa.emr.it/dext3r/


5 

 

occurrence location, date and the date accuracy level, which are complete for all events. More detailed information like 

landslide characteristics (length, width, type and material), triggering factors, damage and references are only available for 

part of the landslide events. These records rely on various sources, such as reports to local authorities, national and local press, 

technical documents, etc. Despite the rich source of information, the landslide inventory probably represents a fraction of the 

actual landslide events, because some landslides with little damage or influences, especially those occurring in the remote area, 5 

are likely to be undetected or unreported. In this study, we only take advantage of the landslides with daily accuracy in terms 

of the occurrence date. Considering the completeness of all the required data, the study period is from 2006 to 2016, during 

which there are 168 landslides meeting the demand (Figure 1b). The 137 landslides during the period 2006 to 2014 (calibration 

period) are used for the threshold definition, and those of the period 2015 to 2016 (validation period) are for the threshold 

evaluation, with a total of 31.  10 

 

Figure 2 shows the monthly distribution of average temperature and rainfall for 50 weather stations as well as that of landslide 

events during the period 2006-2016. It can be seen from Figure 2a and Figure 2b, for months with higher temperature, their 

rainfall amount is smaller, such as the month from May to September. During this period, the difference of both temperature 

and rainfall is small among weather stations. As for other months, their temperature is relatively lower, and there is more 15 

rainfall. The temperature of these months shows small difference among weather stations, while rainfall varies a lot especially 

for months with high rainfall amounts. It is interesting to see that the landslide distribution is in line with that of rainfall. The 

majority of landslides occurred in months with higher amounts of rainfall, indicating the crucial role of rainfall in the landslide 

occurrence in the study area. 

3 Methods 20 

3.1 Antecedent Precipitation Index (API) 

Antecedent Precipitation Index (API) is employed in this study to characterize the wetness condition, which is derived from 

the preceding daily rainfall. It is noted that Antecedent Precipitation Index should be seen as a soil moisture index, allowing 

us to estimate the relative wetness condition of the soil, which is sufficient for the aim of this study. A general formulation of 

API is written as (Gray, 1970): 25 

 APIt  =  ∑ biPt−i

N

i = 0

 (1) 

where APIt is the API value at time t; N is the number of the preceding days;  bi and Pt−i are the weight and the daily rainfall, 

respectively. Though the index of API is based on a daily scale, it can be extended for time series with other temporal 

resolutions. Assuming bi =  ki, Equation (1) can be written as: 

 APIt  =  k APIt−1 +  Pt (2) 
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where k is the recession coefficient, less than 1, used to reflect the rate of drainage and evapotranspiration process. As the 

initial value of API and the number of preceding days need to be estimated, we carried out various experiments which are 

based on different combinations of the initial value of API and the number of preceding days. It is found that the initial value 

no longer has an effect on the API value when the equation is run from the preceding 60 th day. As a result,  APIt is calculated 

from APIt−60, where APIt−60 is assumed to be 30 mm.  5 

 

Depending on the value of the recession coefficient, there are two versions of API. The first one (APIv1 hereafter) assumes the 

recession coefficient constant throughout the year, and the value of 0.84 is widely used in the previous researches, 

recommended by Crozier and Eyles (1980). The second version (APIv2 hereafter) allows the recession coefficient to vary 

according to the change of temperature, taking into account the effect of temperature on the evapotranspiration process. The 10 

variation of the recession coefficient is assumed to be linear in the work of Crow et al. (2005), which also applies in this study: 

 k =  0.84 +  δ (20 − Tave) (3) 

where Tave  is the daily average temperature (℃ ) and δ is a sensitivity parameter ( ℃−1  ). When  δ =  0, the recession 

coefficient is constant as 0.84. We used 20 ℃ as the basis as it is the most common temperature when the value of 0.84 is used. 

The sensitivity parameter δ is determined by comparing the APIv2 time series with the soil moisture data of San Pietro 

Capofiume site for the period from 2006 to 2014, where Pearson correlation coefficient is used as the evaluation criterion. The 15 

optimized parameter is then validated using the data of the period 2015 to 2016. Given the study area has the similar variation 

pattern in terms of temperature, it is assumed the validated parameter at San Pietro Capofiume site could be extrapolated to 

the study area. The derived two versions of API are used to establish the threshold for landslide occurrence.  

3.2 Thresholds for landslides 

In order to explore the role of the antecedent wetness information and the recent rainfall in landslide thresholds, we take 20 

advantage of the empirical threshold approach, which is carried out by analyzing the hydrological and meteorological 

conditions that are responsible for the occurrence of historical landslides. The meteorological condition as the final trigger is 

characterized by the recent 3-day cumulated rainfall prior to landslides. The hydrological condition (here is the wetness 

condition) is indexed with the API value. When calculating these variables that are responsible for the landslides, the data from 

the nearest weather station are used. Based on these variables' distribution, their different percentiles are used as the critical 25 

value. Here 12 percentile ranks are considered, including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 and 50. Four types of landslide thresholds 

are designed by consisting of one variable or the combination of variables, where the critical value of the variables is used to 

determine the threshold level. This threshold definition procedure is illustrated in Figure 3. Four types of landslide thresholds 

are listed in Table 1 and introduced in detail as follows. 

 30 

1) 3-day rainfall threshold  



7 

 

The component of the 3-day rainfall threshold is the recent 3-day cumulated rainfall. It disregards the antecedent wetness 

condition and only focuses on the recent rainfall prior to landslides. When determining this type of threshold, we firstly 

calculate the 3-day cumulated rainfall prior to the landslide occurrence during the period 2006-2014. With the distribution of 

the 3-day cumulated rainfall that are responsible for landslide occurrence, this variable's different percentiles are used as the 

critical value to take into account different levels of the threshold. Taking the 3-day rainfall’s 10th percentile (P10) as an 5 

example, it means that 10% landslides have a 3-day cumulated rainfall less than P10. The higher the percentile rank, the stricter 

the threshold. One example of the 3-day rainfall threshold is illustrated with the blue line in Figure 4a, which separates the 3-

day cumulated rainfall conditions that are likely to trigger landslides from those unlikely to trigger landslides. 

 

2) Hybrid threshold 10 

The hybrid threhsold consists of two components, one is the 3-day cumulated rainfall, used to characterize the recent rainfall 

condition; the other is the API value of the day prior to the recent 3 days, which could indicate the antecedent wetness condition. 

With these two components, the hybrid threshold is able to consider both the antecedent wetness condition and the recent 

rainfall. This raises a question of how to take advantage of these two components when predicting landslide occurrences. 

Although the threshold could be determined using a function that constructs a relationship between these two components, like 15 

the linear function relationship assumed in the work of Mirus et al. (2018b), we used the bilinear format (the red line in Figure 

4a), the same as the work of Mirus et al. (2018a). The reason of using the bilinear format is that the component of the 3-day 

cumulated rainfall could remain the same as the 3-day rainfall threshold, which could facilitate the direct comparison of these 

two types of thresholds. In this way, we could investigate the direct impact of adding antecedent wetness information on the 

prediction performance. The critical value of the two components in the hybrid threshold is determined with their different 20 

percentiles based on the landslide data, which are then used together to separate conditions that are likely to trigger landslides 

from those unlikely to trigger landslides. It is assumed only when the critical value of both components is exceeded, landslides 

are likely to occur, and landslide occurrence is predicted, otherwise landslide non-occurrence is predicted.  

 

3) API threshold 25 

The component of API threshold is the API value prior to the landslide occurrence. As this variable is derived from the 

preceding rainfall, the value of the day prior to landslides is considered to include the antecedent wetness information and the 

recent rainfall information. However, these two types of information are implicitly considered compared with the hybrid 

threshold. Based on the API values prior to each landslide occurrence, its different percentiles are calculated and used to 

determine the API thresholds. The blue line in Figure 4b is one example of the API threshold.   30 

 

4) Updated API threshold 

As the antecedent wetness information and the recent rainfall information is implicitly included in the API threshold, in order 

to explicitly consider the role of the recent rainfall, an updated API threshold is designed, which is based on the API threshold 
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and updated with an added rule. The API critical value is firstly used as the criterion, if it is exceeded, whether there is rainfall 

in the recent 3 days is then evaluated. From Equation (2), it is clear that as the recession coefficient is less than 1, if there is no 

rainfall, the API value will decrease. Therefore, if the API value of the recent 3 days shows a decrease trend, it is considered 

there is no rainfall in the recent 3 days. In this case, even the API critical value is exceeded, it is assumed that landslides are 

unlikely to occur, and the landslide non-occurrence is predicted. In contrast, if the API critical value is exceeded and there is 5 

an increase trend of API value during the recent 3 days, the landslide occurrence is predicted. Examples of these cases are 

shown with red ellipses in Figure 4b, which could help illustrate the updated API threshold.  

 

With these four types of landslide thresholds, three scenarios are designed to address the concerns of this study. First, what's 

the effect of incorporating antecedent wetness information to the landslide threshold. The comparison of the hybrid threshold 10 

and the 3-day rainfall threshold is carried out to answer this question (referred as Scenario 1), because the only difference 

between these two types of threshold is the antecedent wetness information incorporated to the hybrid threshold. The second 

concern is whether it is necessary to explicitly consider the antecedent wetness condition and the recent rainfall when defining 

thresholds for landslides. To answer this question, Scenario 2 and Scenario 3 are designed. Scenario 2 compares the prediction 

performance of the hybrid threshold with that of the API threshold. In this scenario, the two components of the hybrid threshold 15 

could explicitly consider the antecedent wetness information and the recent rainfall information, while these two types of 

information are implicitly included in the API threshold. As for Scenario 3, as the updated API threshold could explicitly 

considering the recent rainfall compared with the API threshold, the prediction performance of the updated API threshold is 

compared with that of the API threshold, which could help investigate the role of the recent rainfall in the threshold definition.  

3.3 Threshold evaluation 20 

The prediction performance of different thresholds is evaluated using the data of the period 2015 to 2016, on the basis of the 

procedure illustrated in Figure 3. When evaluating the threshold performance, we only select the weather stations whose 

vicinities have landslide events. The contingency matrix and Receiver Operating Characteristic (ROC) curves are applied for 

the purpose, which are the most common tools used for the threshold evaluation (Gariano et al., 2015;Mirus et al., 2018b;Staley 

et al., 2013). 25 

 

The contingency matrix consists of four components: Ture Positive (TP), False Negative (FN), False Positive (FP) and True 

Negative (TN), which are the four possible outcomes of the thresholds’ prediction results. These prediction results are based 

on a fixed daily interval from 0:00 A.M.-11:59 P.M. local time. TP events are when the threshold is exceeded and one or more 

landslides occur. FN events are when the threshold is not exceeded, but there are one or more landslides; FP events are when 30 

the threshold is exceeded, but on landslides occur. TN events are when the threshold is not exceeded and there are no landslides.  
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Receiver Operating Characteristic (ROC) curve is plotted with True Positive Rate against False Positive Rate. True Positive 

Rate (TPR) is also known as the hit rate, which is used to measure the proportion of landslides that are correctly predicted. It 

can be calculated as: 

 TPR =  
TP

TP + FN
 (4) 

False Positive Rate (FPR) is also known as the false alarm rate, which is used to measure the proportion of false positives over 

the events when no landslide occurs. It can be calculated as: 5 

 FPR =  
FP

FP + TN
 (5) 

The variation range of TPR and FPR is both from 0 to 1. The optimal value of TPR and FPR is 1 and 0, respectively. Therefore, 

the optimal prediction performance is achieved when TPR equals 1 and FPR equals 0 (perfect point). In reality, it is difficult 

for a threshold to reach the perfect point, as a result, the Euclidean distance (d) to the perfect point is used as a criterion to 

evaluate the prediction performance (Gariano et al., 2015). The smaller the distance, the better the performance. Sometimes 

owing to the danger of the missed alarms, the optimal one is chosen among thresholds with TPR as 1. In this case, the smaller 10 

the FAR value, the better the prediction performance.  

 d =  √(FPR)2 + (TPR − 1)2 (6) 

For each threshold approach, we explored various values or combinations. In order to evaluate the predictive capability of one 

certain threshold approach, the area under the ROC curve (AUC) of the threshold approach is calculated. The larger the area, 

the better the predictive capability. 

4 Results 15 

4.1 Thresholds for landslides 

Before analyzing the hydrological and meteorological conditions responsible for the occurrence of historical landslides, we 

firstly test the reliability of API in indexing the wetness condition. The sensitivity parameter δ of APIv2 is calibrated as 0.006 

℃−1. In order to validate the parameter, its performance is evaluated using the data of the independent period 2015 to 2016. 

Figure 5 shows the scatter plot of API against the soil moisture data at San Pietro Capofiume site, with Figure 5a for APIv1 and 20 

Figure 5b for APIv2. The Pearson correlation coefficient (rp) is 0.71 for the APIv2. Although it can't be considered significant, 

it shows a great improvement compared with APIv1, whose Pearson correlation coefficient (rp) is 0.51. From the data 

distribution in Figure 5b, it is seen that the poor linear relationship is mostly attributed to the high values of APIv2. The soil 

water content is limited by the maximum water capacity of the soil layer; however, there is no restriction for the APIv2 value. 
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Therefore, if the points with high APIv2 values are restricted by a maximum value, the linear relationship between the APIv2 

value and soil water content will become more significant. As the API value is employed to index the relative soil wetness 

state, we also calculated the Spearman's rank correlation coefficient, which could measure the statistical dependence between 

the rankings of two variables. It is found that the Spearman's rank correlation coefficient is high (0.82), indicating that there is 

a similar rank between the APIv2 value and soil water content. Therefore, the parameter of APIv2 could be regarded as 5 

acceptable, and we use it to calculate APIv2 value of all landslides. As for the APIv1, both Pearson and Spearman correlation 

coefficient are low, implying the poor relationship between APIv1 and soil water content. Despite this, we also calculated APIv1 

for the comparison purpose.  

 

With landslide records and time series of rainfall and API during the period 2006-2014, the variables that are responsible for 10 

landslide occurrences are calculated, such as the 3-day cumulated rainfall and the API values. The distribution of these 

variables as well as their critical values is shown in Figure 6. Figure 6a is for the antecedent API that are related with landslide 

occurrences, and Figure 6b for landslides' recent 3-day cumulated rainfall. These two variables are the component of the 3-

day rainfall threshold and the hybrid threshold. As for the component of the API threshold and the updated API threshold, the 

distribution of the API value prior to landslide occurrences is shown in Figure 6c. The critical value of the variables is 15 

determined with different percentiles at 12 percentile ranks (including 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 and 50), which are marked 

with triangles in Figure 6 and listed in Table 2. The variables' critical values are then used to define different landslide 

thresholds. Taking the 3-day rainfall threshold as an example, as its component is the 3-day cumulated rainfall, the threshold 

value is determined using this variable's critical value, such as 5.14 mm at the 10th percentile rank. As for the hybrid threshold 

which has two components, the critical value of the API prior to the 3 days are combined with the critical value of the 3-day 20 

cumulated rainfall to determine various threshold levels.  

 

From Figure 6a, the API value of the day prior to the recent 3 days is higher for APIv2 than APIv1. This is due to the variation 

of the recession coefficient in APIv2. The Emilia-Romagna region is characterized by the Mediterranean climate, with warm 

and dry summers and cool and wet winters. As shown in Figure 2c, the majority of landslides occurred in the wet season, 25 

during which the temperature is low. According to Equation (3), the recession coefficient in wet season is likely to be higher 

than 0.84, and the lower loss rate of the preceding rainfall leads to a higher API value. The similar result can be found in Figure 

6c. It is found all these three variables have a wide variation range. Taking the 3-day cumulated rainfall as an example, as is 

shown in Figure 6b, the 3-day cumulated rainfall that are related with landslide occurrences ranges from the minimum value 

of 0.4 mm to the maximum value of 231.2 mm. This indicates in several cases with small rainfall amounts, the occurrence of 30 

landslides is not only attributed to the recent rainfall prior to landslides, but the antecedent wetness condition also plays a key 

role. The variables' wide variation range implies that the conditions responsible for landslides vary a lot, which is also the 

reason why different threshold levels are explored for each threshold approach.  
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4.2 Threshold comparison 

To compare the thresholds in the three scenarios, their prediction performance is evaluated by calculating contingencies and 

preforming the ROC analysis. In the ROC plot, the line represents the performance of one certain threshold approach, and the 

area under the ROC curve (AUC) could measure its predictive capability. The points on each line from right to left represent 

threshold levels from low to high, which are defined with the variables' critical values listed in Table 2. For the hybrid threshold 5 

that has two components, the points on the line represent the variation of the 3-day cumulated rainfall's critical value, where 

the API's critical value is fixed with its 10th percentile, with 11.01 mm for APIv1 and 33.87 mm for APIv2. The reason of using 

this case as the representative of the hybrid threshold is that the optimal performance is achieved when API's critical value is 

determined at the 10th percentile rank, compared with API's other critical values.  

 10 

For this procedure, the data of the period from 2015 to 2016 are used. There are 12 weather stations whose vicinities have 

landslide events. The landslides occurring in the same day and belonging to the same weather station are regarded as one 

landslide event, which is the reason why the 31 landslides are only counted as 22 events with landslides in the validation 

procedure. As we performed the landslide prediction at a daily interval, there should be 8772 events in total for the 12 weather 

stations. However, due to the missing data of a few days, only 8745 events are obtained for each threshold. The results of each 15 

scenario are introduced as follows.  

 

a) Scenario 1 

The prediction results of the 3-day rainfall threshold and the hybrid threshold are compared in Figure 7, with Figure 7a for 

APIv1, and Figure 7b for APIv2. It is clear that with the increment of the threshold level, the false positive rate is reduced 20 

sometimes at the expense of decreasing the true positive rate. For the hybrid threshold based on APIv1 (Figure 7a), its AUC 

value is a little smaller than that of the 3-day rainfall threshold, which is unexpected given the important role of the antecedent 

soil moisture condition in the initiation of landslides. It is clear that this is mainly due to the missed alarms caused by the lower 

hybrid threshold levels. However, as for the false positive rate, the hybrid threshold presents a great improvement compared 

with the 3-day rainfall threshold when the 3-day cumulated rainfall's critical value remains the same. As the only difference 25 

between these two types of threshold is the incorporation of the antecedent API in the hybrid threshold, the improvement in 

false positive rate is attributed to this factor. In order to illustrate this improvement more clearly, the bar plot in Figure 7a 

shows the false positive rate of these two types of thresholds when their common component (3-day cumulated rainfall) 

remains the same level. The proportion of the reduced false positives which is attributed to the added antecedent wetness 

information is also presented in the right plot of Figure 7a. It is clear that the lower the critical value of the 3-day cumulated 30 

rainfall is, the higher the proportion of reduced false positives is. This indicates the false positives predicted by the lower 3-

day rainfall threshold have a higher proportion of the dry antecedent wetness condition. The false positives with dry antecedent 

wetness condition are excluded by adding the API information, and thus has a higher proportion of reduced false positives. In 
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contrast, the false positives predicted by the higher 3-day rainfall threshold level have a lower proportion of the dry antecedent 

soil wetness condition. Therefore, it is implied that considering the antecedent wetness condition is more crucial when using 

the lower critical value of the 3-day cumulated rainfall. The above results also apply to the case of APIv2 in Figure 7b except 

that the AUC value of the hybrid threshold is a littler smaller than that of the 3-day rainfall threshold. From Figure 7b, it is 

expected that the hybrid threshold based on APIv2 has a higher AUC value than the 3-day rainfall threshold. Based on the 5 

opposite result from the case of APIv1, it is implied that APIv2 has better representativeness of the soil wetness condition than 

APIv1, which is in line with the results in Figure 5. By comparing the hybrid threshold based on APIv2 with that based on APIv1, 

it is found the hybrid threshold based on APIv2 not only increases the true positive rate, but also improves the performance by 

reducing false positives. 

 10 

b) Scenario 2 

Figure 8 shows the prediction results of the hybrid threshold and the API threshold, with Figure 8a for the thresholds based on 

APIv1, and Figure 8b for the thresholds based APIv2. By analyzing the AUC value, it is found that for both APIv1 and APIv2, 

the AUC value of the hybrid threshold is greater than that of the API threshold, and the improvement is more distinct for APIv2 

than APIv1. From Figure 8a, although the hybrid threshold is more capable of reducing the false positive rate, its true positive 15 

rate of the lower threshold level is smaller, which influences the AUC value. As for the thresholds based on APIv2, the hybrid 

threshold not only reduces the false positive rate, its performance of true positive rate is also superior to API threshold. 

 

c) Scenario 3 

The comparison results of the API threshold and the updated API threshold are shown in Figure 9. Figure 9a is for the 20 

thresholds based on APIv1, and Figure 9b is for the thresholds based on APIv2. From Figure 9a, these two threshold approaches 

have the same AUC value, while for APIv2 in Figure 9b, the updated API threshold has a larger AUC value than the API 

threshold. It is found that for both APIv1 and APIv2, the updated API threshold has a superior performance in reducing the false 

positive rate, which is clear in the right bar plot. With the increase of the API's critical value, the proportion of reduced false 

positives which are caused by the updated API threshold decreases. This indicates that among the false positives predicted by 25 

the lower API threshold, there is a higher proportion of the cases without rainfall during the recent 3 days. In contrast, for the 

false positives predicted by the higher API threshold, there is a lower proportion of the cases without rainfall during the recent 

3 days. Therefore, highlighting the role of the recent 3-day rainfall is more important when the lower API's critical value is 

used. By comparing Figure 9b with Figure 9a, it is clear that the updated API threshold's ability to reduce false positives is 

superior for the APIv2 version to APIv1 version.  30 

4.3 The optimal threshold 

To determine the optimal threshold level for each threshold approach, the Euclidean distance (d) is used as the criterion to 

measure the balance between the correct predictions and incorrect predictions. The optimal prediction results determined by 
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the smallest Euclidean distance are listed in Table 3. Among the seven optimal thresholds, the hybrid threshold based on APIv2 

has the smallest distance to the perfect point, with the true positive rate as 0.95 and false positive rate as 0.11. The updated 

API threshold based on APIv2 could also provide a better prediction result, where the true positive rate is 0.91 and the false 

positive rate is 0.10. It is interesting to find that these two threshold definition approaches could explicitly consider the 

antecedent wetness condition and the recent rainfall. The superiority of these two threshold approaches is mainly reflected in 5 

reducing the false positive rate, though the improvement in terms of the true positive rate value is more distinct. This is because 

the landslide events used for the validation procedure are very limited, even a small variation in true positives will lead to an 

obvious variation in the value of true positive rate. Taking the two versions of the hybrid threshold as an example, although 

the true positive rate increases from 0.91 to 0.95, this is caused only by the difference of one true positive. However, for the 

false positive rate, the decease from 0.15 to 0.11 needs a difference of 266 false positives. It is also found the optimal thresholds 10 

determined using the APIv2 data could provide better performance than those based on APIv1 data.  

 

In practice, in order to avoid the risk of missed alarms, the optimal threshold is determined among thresholds with the true 

positive rate of 1. In this case, the smaller the  false positive rate, the better the threshold's prediction performance. Table 4 

lists the optimal results determined in this way. The hybrid threshold based on APIv1 fails to have the optimal result when the 15 

true positive rate is restricted to 1, since all its cases have a true positive rate less than 1. Among the rest five threshold versions, 

the hybrid threshold and the updated API threshold determined using APIv2 also provide the best results. Their false positive 

rate is improved obviously compared with other threshold approaches, with 0.16 for the updated API threshold and 0.17 for 

the hybrid threshold. It is also found that using APIv2 data in the definition of threshold could benefit its prediction performance, 

compared with APIv1.  20 

5 Discussion 

The hydro-meteorological landslide thresholds are gaining more and more attention in incorporating the antecedent wetness 

information into the thresholds, owing the increased recognition of the crucial role of the hydrological process in landslides 

initiation. The hydro-meteorological thresholds are guided by the cause-trigger concept proposed by Bogaard and Greco 

(2018). They advocate the landslide thresholds should combine the antecedent factors that predispose hillslope to failure 25 

(causes) and the recent rainfall events associated with the landslide initiation (triggers). Although the hydro-meteorological 

landslide thresholds are established in a number of published works (Chleborad et al., 2008;Scheevel et al., 2017;Mirus et al., 

2018a;Mirus et al., 2018b), the role of the antecedent wetness and recent rainfall information in the landslide threshold is rarely 

understood. The results of our proposed framework provide useful information for this topic and complement the prior 

exploration on the hydro-meteorological landslide thresholds. 30 
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First, the comparison of the 3-day rainfall threshold and the hybrid threshold shows that including wetness information in the 

hybrid threshold could improve the false positive rate, compared with the 3-day rainfall threshold which only considers the 

recent rainfall information. As the only difference between these two types of thresholds is the incorporation of the wetness 

information, the improvement in the false positive rate is due to this factor. The work of Zhao et al. (2019) also demonstrates 

that integrating antecedent soil moisture conditions could improve the predictive capability of the cumulated event rainfall-5 

rainfall duration (ED) thresholds, especially in terms of reducing false positives. However, the improvement directly 

contributed by the added soil wetness information is unexplored. This study is the first time to investigate this issue. The right 

plot in Figure 7 shows the proportion of the reduced false positives that is caused by the added antecedent wetness information, 

which could reach 35% for APIv1 and 52% for APIv2. Such high proportion of reduced false positives further illustrates the 

crucial role of the antecedent wetness information in affecting the landslide threshold's predictive capability. We also explored 10 

the extent to which the false positive rate is improved under different critical values of the 3-day cumulated rainfall. It is found 

that the false positive rate is improved more distinctly when a lower critical value of the 3-day cumulated rainfall is used. By 

including the antecedent wetness condition, events whose antecedent wetness condition is dry could be excluded from false 

positives, and thus reduce false positive rate. Given the dry wetness condition is more frequent in the dry season compared 

with the wet season, it is implied that incorporating the antecedent wetness condition to the landslide threshold is more 15 

advantageous in reducing false positives for the dry season. 

 

Second, as for how to make use of the antecedent wetness information and recent rainfall information in landslide thresholds, 

two caparisons are carried out. Among the four types of the thresholds proposed in this study, the hybrid threshold and the 

updated API threshold could be regarded as the case that could explicitly consider the antecedent wetness information and the 20 

recent rainfall, while these two types of information are implicitly included in the API threshold. Therefore, by comparing the 

API threshold with the hybrid threshold and the updated API threshold, respectively, we could answer this question. The 

comparison of the hybrid threshold and the API threshold shows the hybrid threshold could provide a better prediction 

performance in terms of increasing true positive rate and reducing false positive rate. By explicitly considering the recent 

rainfall, the updated API threshold presents a distinct improvement in reducing false positives compared with the API 25 

threshold. Based on these results, it is concluded that explicitly considering the antecedent wetness condition and the recent 

rainfall in the threshold definition could benefit the threshold's prediction performance. Considering the better predictive 

capability of the updated API threshold, it is considered its format provides a new perspective for the landslide threshold 

definition. When defining the updated API threshold, only one variable (API) is used, which could avoid the construction of 

the function relationship between two variables of the rainfall threshold, like the power law of the rainfall intensity-duration 30 

threshold. Besides, the updated API threshold could take into consideration both the antecedent wetness condition and the 

recent rainfall, which proves to be beneficial for the threshold's predictive capability. Though we employed API to index the 

soil moisture condition, this threshold definition approach could apply to other measures of the soil moisture, like the in-situ 

measured soil moisture and the remote sensed soil moisture. 
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In addition to the exploration on the role of the antecedent wetness and recent rainfall information in landslide thresholds, it is 

also found that the reliability of the soil moisture measurement is also a key factor affecting the threshold's predictive 

capability. In this study, two versions of API are used to index the soil wetness state when defining the threshold. The recession 

coefficient remains constant for APIv1, while the recession coefficient of APIv2 is allowed to vary according to the change of 5 

the temperature. By comparing APIv1 and APIv2 with the measured soil water content at San Pietro Capofiume site, 

respectively, it is found that APIv2 is more correlated with the soil water content. The APIv2's better representativeness of the 

soil moisture is also reflected in the threshold performance, where the thresholds based on APIv2 present better prediction 

results than those based on APIv1. Therefore, it is implied that the better representation of the soil moisture could also benefit 

the threshold's prediction performance. The representation of the soil moisture could be improved by using the measured soil 10 

moisture (Mirus et al., 2018a;Mirus et al., 2018b) or other indexes estimated with a better model, like the water balance model 

proposed by Godt et al. (2006), which could account for the monthly variations in evapotranspiration and an exponential 

decline to reflect faster drainage during wetter conditions.  

 

Although the above results could provide useful information for the landslide threshold definition, it is noted the method we 15 

employed in this study is based on the statistical approach. Therefore, the proposed results probably be influenced by the data 

used for the threshold evaluation, which is also highlighted in the work of Gariano et al. (2015). They stated that the lack of 

landslide information has a great impact on the contingencies and the skill scores used to evaluate the threshold forecasting 

performance. In our study, the considered landslides are likely to be incomplete, which will cause the uncertainties to the 

contingencies and the ROC analysis. However, given the large proportion of the days without landslides (the sum of false 20 

positives and true negatives), according to Equation (5) the variation in the landslide events has little impact on the false 

positive rate. From the results of the thresholds, the improvement caused by adding antecedent soil wetness information (or 

explicitly including two types of information) mainly reflects in reducing false positives. As a result, it is regarded the proposed 

results are robust. Despite this, explorations with more complete data are encouraged to test the proposed results. To better 

understand the role of the antecedent wetness condition and the recent rainfall in the occurrence of rainfall-induced landslides, 25 

a physics-based approach is expected. The understanding of the physic process could help construct the threshold which is 

more in line with the practice. For instance, Napolitano et al. (2015) explored the effect of seasonal variations of antecedent-

hydrological conditions on rainfall triggering of debris flows by carrying out a hydrological and slope stability model. The 

results show the opposing winter and summer antecedent hydrological conditions exert a significant control on intensity and 

duration of rainfall triggering events. Thomas et al. (2018) designed thousands of storm patterns and coupled them with a 30 

physics-based hydrological and slope stability model for various antecedent wetness conditions, the pore water pressure and 

factor of safety metrics were then analyzed. The proposed physics-based approach facilitates the exploration of the relative 

impact of plausible variations in soil hydraulic and mechanical properties on thresholds.  
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There are other points worth noting. First, when separating the antecedent wetness condition from the recent rainfall, 3 days 

are selected as the boundary. Although there may be many other selections for this separation, the initial exploration we present 

here is intended as a proof-of-concept. We start by using 3 days as the separation to explore the role of the antecedent wetness 

condition and the recent rainfall in landslide thresholds. Mirus et al. (2018a) explored a wide range of timescales when 

developing hydro-meteorological thresholds for landslide initiation. They found that using 3 days as the separation works well 5 

for two sites in the Pacific Northwest of the United States. Besides, 3 days are widely used to separate the antecedent condition 

from the recent condition in the previous studies (Chleborad et al., 2008;Scheevel et al., 2017;Mirus et al., 2018b). Despite 

this, different regions should expect different durations of recent rainfall to correlate with shallow landslide occurrences. 

Second, Antecedent Precipitation Index (API) is used as a proxy of soil moisture in this study, owing to its simple formulation 

and less data input. Although we try to improve the API's representativeness of the soil moisture by allowing the recession 10 

coefficient to vary, it can only be regarded as an indicator of the soil moisture, which is a limitation of our study. Therefore, 

to make the proposed results more reliable, explorations based on more accurate measures of soil moisture are encouraged.  

6 Conclusion 

We presented a framework to explore the role of the antecedent wetness and recent rainfall information in the thresholds for 

landslides. The comparative study is carried out among four types of landslide thresholds. By including different variables that 15 

are responsible for landslide occurrences, these thresholds could represent different cases, like whether to include the 

antecedent wetness condition or whether to consider the recent rainfall explicitly. The important role of the antecedent wetness 

information in landslide thresholds is further reinforced. The false positives could be reduced by incorporating the antecedent 

wetness information in the threshold definition, where the proportion of reduced false positives could reach as high as 50%. It 

is beneficial for the threshold's predictive capability to include the antecedent wetness information and the recent rainfall 20 

condition more explicitly. It is also found the reliability of the soil moisture measurement is a key factor affecting the 

threshold's predictive capability. The proposed results provide a timely complement to the exploration on hydro-meteorological 

landslide thresholds. It is the empirical approach that we used to investigate the relative impact of different information in 

landslide thresholds, a physics-based approach is also expected to explore this issue, which would benefit the development of 

the hydro-meteorological thresholds in landslide early warnings. 25 
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Tables  

Table 1. Four types of the threshold definition approach 

No. Threshold Type Component 

1 3-day rainfall threshold  the recent 3-day cumulative rainfall prior to landslide occurrences 

2 Hybrid threshold 
the recent 3-day cumulative rainfall prior to landslide occurrences 

the API value of the day preceding the recent 3 days 

3 API threshold the API value prior to the landslide occurrences 

4 Updated API threshold  
the API value prior to the landslide occurrences 

an increase trend of API value during the recent 3 days 

 

 

Table 2. The critical values of landslides' three variables 5 

 

 

 

  

Label 
Percentile 

Rank 

API prior to the 3 days 

(mm) 3-day cumulated 

rainfall (mm) 

API prior to landslides 

(mm) 

APIv1 APIv2 APIv1 APIv2 

P1 1 3.11 10.64 0.58 7.75 15.03 

P2 2 3.56 18.16 1.03 10.70 24.22 

P3 3 4.61 18.69 1.72 12.97 43.83 

P4 4 6.01 19.61 2.45 14.66 46.32 

P5 5 6.57 22.81 2.60 15.90 49.70 

P6 6 6.90 24.58 2.74 16.03 50.65 

P7 7 7.55 27.96 3.63 17.07 51.71 

P8 8 8.72 30.00 4.01 18.51 52.79 

P9 9 9.90 32.06 4.58 19.27 54.84 

P10 10 11.01 33.87 5.14 19.58 57.11 

P20 20 15.66 55.00 12.60 28.16 72.48 

P50 50 36.72 91.13 36.00 59.52 117.70 
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Table 3. The prediction results of the optimal thresholds determined by the smallest Euclidean distance 

Optimal 

Threshold 
Equation 

True 

Positive 

False 

Negative 

False 

Positive 

True 

Negative 

Ture 

Positive 

Rate 

False 

Positive 

Rate 

Euclidean 

distance 

Hybrid 

threshold 

APIv1 

API > 11.01 

(P10), R > 12.60 

(P20) 

20 2 1266 7457 0.91 0.15 0.17 

APIv2 

API > 33.87 

(P10), R > 12.60 

(P20) 

21 1 1000 7723 0.95 0.11 0.12 

3-day rainfall 

threshold 
R > 12.60 (P20) 21 1 1815 6908 0.95 0.21 0.21 

API 

threshold 

APIv1 API > 28.16 (P20) 20 2 1910 6813 0.91 0.22 0.24 

APIv2 API > 72.48 (P20) 20 2 1482 7241 0.91 0.17 0.19 

Updated 

API 

threshold 

APIv1 API > 28.16 (P20) 19 3 1364 7359 0.86 0.16 0.21 

APIv2 API > 72.48 (P20) 20 2 860 7863 0.91 0.10 0.13 

* R is the 3-day cumulated rainfall 

 

 

Table 4. The prediction results of the optimal thresholds determined among threshold with the true positive rate of 1 5 

Optimal 

Threshold 
Equation 

True 

Positive 

False 

Negative 

False 

Positive 

True 

Negative 

Ture 

Positive 

Rate 

False 

Positive 

Rate 

Euclidean 

distance 

Hybrid 

threshold 

APIv1 NULL - - - - - - - 

APIv2 

API > 33.87 

(P10), R > 5.14 

(P10) 

22 0 1465 7258 1 0.17 0.17 

3-day rainfall 

threshold 
R > 5.14 (P10) 22 0 2939 5784 1 0.34 0.34 

API 

threshold 

APIv1 API > 16.30 (P6) 22 0 3582 5141 1 0.41 0.41 

APIv2 API > 46.32 (P4) 22 0 2530 6193 1 0.29 0.29 

Updated 

API 

threshold 

APIv1 NULL - - - - - - - 

APIv2 API > 46.32 (P4) 22 0 1389 7334 1 0.16 0.16 

* R is the 3-day cumulated rainfall 
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Figures 

 

Figure 1. a) Location of Emilia-Romagna region with its DEM map and b) distribution of studied landslides and in-situ measurement 

stations 
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Figure 2. The monthly distribution of average temperature (a) and rainfall (b) for 50 weather stations as well as that of landslide 

events (c) during the period 2006-2016 
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Figure 3. The procedure of threshold definition and threshold evaluation 
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Figure 4. The example of landslide thresholds as well as the events with landslides and without landslide, a) for 3-day rainfall 

threshold and hybrid threshold, b) for API threshold and the updated API threshold 
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Figure 5. The scatter plot of API against the soil moisture at San Pietro Capofiume site, a) for APIv1, b) for APIv2 
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Figure 6. The distribution of landslides' variables as well as their different critical values (determined at the percentile rank of 1, 2, 

3, 4, 5, 6, 7, 8, 9, 10, 20 and 50),  a) for the API value of the day prior to the recent 3 days, b) for the recent 3-day cumulated rainfall 5 
prior to landslide occurrences, c) for the API value prior to landslide occurrences 
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Figure 7. The prediction results of the hybrid threshold and 3-day rainfall threshold, a) for the hybrid threshold based on APIv1, b) 

for the hybrid threshold based on APIv2 
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Figure 8. The prediction results of the hybrid threshold and API threshold, a) for the thresholds based on APIv1, b) for the thresholds 

based on APIv2 5 
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Figure 9. The prediction results of the API threshold and the updated API threshold, a) for the thresholds based on APIv1, b) for the 

thresholds based on APIv2 

 


