Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
    4.819
  • CiteScore value: 4.10 CiteScore
    4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
Discussion papers
https://doi.org/10.5194/hess-2019-157
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-157
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 23 Apr 2019

Research article | 23 Apr 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Hydrology and Earth System Sciences (HESS).

Estimating Interception from Near-Surface Soil Moisture Response

Subodh Acharya1, Daniel McLaughlin2, David Kaplan3, and Matthew J. Cohen1 Subodh Acharya et al.
  • 1School of Forest Resources and Conservation, University of Florida, Gainesville FL
  • 2Department of Forest Resources and Conservation, Virginia Tech, Blacksburg, VA
  • 3Environmental Engineering Sciences Department, University of Florida, Gainesville FL

Abstract. Interception is the storage and subsequent evaporation of rainfall by above-ground structures, including canopy and groundcover vegetation and surface litter. Accurately quantifying interception is critical for understanding how ecosystems partition incoming precipitation, but it is difficult and costly to measure, leading most studies to rely on modeled interception estimates. Moreover, forest interception estimates typically focus only on canopy storage, despite the potential for substantial interception by groundcover vegetation and surface litter. In this study, we developed an approach to quantify total interception losses (i.e., including forest canopy, understory, and surface litter layers) using measurements of shallow soil moisture dynamics during rainfall events. Across 36 pine and mixed forest stands in Florida (USA), we used soil moisture and rainfall data to estimate the interception storage capacity (βs), a parameter required to estimate total annual interception losses (Ia) relative to rainfall (R). Estimated values for βs (mean βs = 0.30 cm; 0.01 ≤ βs ≤ 0.62 cm) and Ia/R (mean Ia/R = 0.14; 0.06 ≤ Ia/R ≤ 0.21) were consistent with reported literature values for these ecosystems and were significantly predicted by forest structural attributes (leaf area index and percent groundcover), as well as other site variables (e.g., water table depth). The best-fit model was dominated by LAI and explained nearly 80 % of observed βs variation. These results suggest that whole-forest interception can be measured using a single near-surface soil moisture time series and highlight the variability in interception losses across a single forest type, underscoring the need for expanded empirical measurement. Potential cost savings and logistical advantages of this method relative to conventional, labor-intensive interception measurements may improve empirical estimation of this critical water budget element.

Subodh Acharya et al.
Interactive discussion
Status: open (until 18 Jun 2019)
Status: open (until 18 Jun 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Subodh Acharya et al.
Subodh Acharya et al.
Viewed  
Total article views: 198 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
153 44 1 198 1 1
  • HTML: 153
  • PDF: 44
  • XML: 1
  • Total: 198
  • BibTeX: 1
  • EndNote: 1
Views and downloads (calculated since 23 Apr 2019)
Cumulative views and downloads (calculated since 23 Apr 2019)
Viewed (geographical distribution)  
Total article views: 167 (including HTML, PDF, and XML) Thereof 166 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 22 May 2019
Publications Copernicus
Download
Citation