Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Discussion papers
https://doi.org/10.5194/hess-2019-247
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-247
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 25 Jun 2019

Research article | 25 Jun 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Hydrology and Earth System Sciences (HESS).

Terrestrial Water Loss at Night: Global Relevance from Observations and Climate Models

Ryan S. Padrón, Lukas Gudmundsson, Dominik Michel, and Sonia I. Seneviratne Ryan S. Padrón et al.
  • Institute for Atmospheric and Climate Science, Department of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland

Abstract. Nocturnal water loss (NWL) from the surface into the atmosphere is often overlooked because of the absence of solar radiation to drive evapotranspiration and the measuring difficulties involved. However, there is growing evidence that suggests NWL – and particularly nocturnal transpiration – represents a considerable fraction of the daily values. Here we provide a global overview of the characteristics of NWL based on latent heat flux estimates from the FLUXNET2015 dataset, as well as from simulations of global climate models. Eddy-covariance measurements at 99 sites indicate that on average NWL represents 6.3 % of total evapotranspiration. There are six sites where NWL is higher than 15 %; these are mountain forests with considerable NWL during winter related to snowy and windy conditions. Higher vapor pressure deficit, wind speed and soil moisture are related to higher NWL, although this is not consistent across all sites. On the other hand, the global multi-model mean of terrestrial NWL is 7.9 % of total evapotranspiration. The spread of the model ensemble, however, is greater than 20 % over 70 % of the land area. Finally, the multi-model mean of future projections indicates an increase of NWL everywhere by an average of 1.8 %, but the spread between models at individual locations is often twice as large at least. Overall, this study highlights the relevance of water loss during the night and opens the door to explore its influence on the water cycle and the climate system under present and future conditions.

Ryan S. Padrón et al.
Interactive discussion
Status: open (until 20 Aug 2019)
Status: open (until 20 Aug 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Ryan S. Padrón et al.
Ryan S. Padrón et al.
Viewed  
Total article views: 252 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
168 79 5 252 17 7 9
  • HTML: 168
  • PDF: 79
  • XML: 5
  • Total: 252
  • Supplement: 17
  • BibTeX: 7
  • EndNote: 9
Views and downloads (calculated since 25 Jun 2019)
Cumulative views and downloads (calculated since 25 Jun 2019)
Viewed (geographical distribution)  
Total article views: 165 (including HTML, PDF, and XML) Thereof 164 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 19 Jul 2019
Publications Copernicus
Download
Short summary
Our focus is on the net exchange of water between land and air through evapotranspiration and dew during the night. We provide for the first time an overview of the magnitude and variability of this flux across the globe from observations and climate models. Nocturnal water loss from land is 7 % of total evapotranspiration on average and can be greater than 15 % locally. Our results highlight the relevance of this often-overlooked flux, with implications for water resources and climate studies.
Our focus is on the net exchange of water between land and air through evapotranspiration and...
Citation