Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Discussion papers
https://doi.org/10.5194/hess-2019-474
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-474
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 11 Oct 2019

Submitted as: research article | 11 Oct 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Hydrology and Earth System Sciences (HESS).

Ubiquitous increases in flood magnitude in the Columbia River Basin under climate change

Laura E. Queen1, Philip W. Mote1, David E. Rupp1, Oriana Chegwidden2, and Bart Nijssen2 Laura E. Queen et al.
  • 1Oregon Climate Change Research Institute, Oregon State University, Corvallis OR 97331 USA
  • 2Department of Civil and Environmental Engineering, University of Washington Seattle WA 98105 USA

Abstract. The US and Canada have entered negotiations to modernize the Columbia River Treaty, signed in 1961. Key priorities are balancing flood risk, hydropower production, and improving aquatic ecosystem function while incorporating projected effects of climate change. In support of the US effort, Chegwidden et al. (2017) developed a large-ensemble dataset of past and future daily flows at 396 sites throughout the Columbia River Basin (CRB) and select other watersheds in western Washington and Oregon, generating a large ensemble using state-of-the art climate and hydrologic models. In this study, we use that dataset – the largest now available – to present new analyses of the effects of future climate change on flooding using water year maximum daily flows. For each simulation, flood statistics are estimated from Generalized Extreme Value distributions fit to simulated water year maximum daily flows for 50-year windows of the past (1950–1999) and future (2050–2099) periods. Our results contrast with previous findings: we find that the vast majority of locations in the CRB are estimated to experience an increase in future discharge magnitudes. We show that on the Columbia and Willamette rivers, increases in discharge magnitudes are smallest downstream and grow larger moving upstream. For the Snake River, however, the pattern is reversed, with increases in discharge magnitudes growing larger moving downstream to the confluence with the Salmon River tributary, and then abruptly dropping. We decompose the variation in results attributable to climate and hydrologic factors, finding that climate contributes more variation in larger basins while hydrology contributes more in smaller basins. Equally important for practical applications like flood control rule curves, the seasonal timing of flooding shifts dramatically on some rivers (e.g., on the Snake, 20th century floods occur exclusively in late spring, but by the end of the 21st century some floods occur as early as December) and not at all on others (e.g. the Willamette).

Laura E. Queen et al.
Interactive discussion
Status: open (until 15 Dec 2019)
Status: open (until 15 Dec 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Laura E. Queen et al.
Laura E. Queen et al.
Viewed  
Total article views: 345 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
266 77 2 345 2 2
  • HTML: 266
  • PDF: 77
  • XML: 2
  • Total: 345
  • BibTeX: 2
  • EndNote: 2
Views and downloads (calculated since 11 Oct 2019)
Cumulative views and downloads (calculated since 11 Oct 2019)
Viewed (geographical distribution)  
Total article views: 274 (including HTML, PDF, and XML) Thereof 274 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 13 Nov 2019
Publications Copernicus
Download
Short summary
Using a large ensemble of simulated flows throughout the Northwest, we compare daily flood statistics in the past (1950–99) and future (2050–99) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from exclusively spring to both winter and spring. These results, properly extended, may help inform flood risk management and the negotiations of the Columbia River Treaty.
Using a large ensemble of simulated flows throughout the Northwest, we compare daily flood...
Citation