Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Discussion papers
https://doi.org/10.5194/hess-2019-522
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-522
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 14 Oct 2019

Submitted as: research article | 14 Oct 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Hydrology and Earth System Sciences (HESS).

Assessment and Projection of Water Budget over Western Canada using Convection Permitting WRF Simulations

Sopan Kurkute1, Zhenhua Li2, Yanping Li1,2, and Fei Huo2 Sopan Kurkute et al.
  • 1School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK Canada
  • 2Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK Canada

Abstract. Water resources in cold regions in western Canada face severe risks posed by anthropogenic global warming as evapotranspiration increases and precipitation regimes shift. Although understanding the water cycle is key in addressing climate change issues, it is difficult to obtain high spatial and temporal resolution observations of hydroclimatic processes, especially in remote regions. Climate models are useful tools for dissecting and diagnosing these processes, especially, convection-permitting (CP) high-resolution regional climate simulation provides advantages over lower-resolution models by explicitly representing convection. In addition to better representing convective systems, higher spatial resolution also better represents topography and mountain meteorology, and highly heterogeneous geophysical features. However, there is little work with convection-permitting regional climate models conducted over western Canada. Focusing on the Mackenzie and Saskatchewan river basins, this study investigated the surface water budget and atmospheric moisture balance in historical and RCP8.5 projections using 4-km CP Weather Research and Forecast (WRF). We compared the high-resolution 4-km CP WRF and three common reanalysis datasets: NARR, JRA-55, and ERA-Interim. High-resolution WRF out-performs the reanalyses in balancing the surface water budget in both river basins with much lower residual terms. For the pseudo-global warming scenario at the end of the 21st century with RCP8.5 radiative forcing, both the Mackenzie and Saskatchewan river basins show increases in the amplitude for precipitation and evapotranspiration and a decrease in runoff. The Saskatchewan river basin shows a moderate increase of precipitation in the west and a small decrease in the east. Combined with a significant increase of evapotranspiration in a warmer climate, the Saskatchewan river basin would have a larger deficit of water resources than in the current climate based on the PGW simulation. The high-resolution simulation also shows the difference of atmospheric water vapour balance in the two river basins is due to flow orientation and topography differences at the western boundaries of the two basins. The sensitivity of water vapour balance to fine-scale topography and atmospheric processes shown in this study demonstrates that high-resolution dynamical downscaling is important for large-scale water balance and hydrological cycles.

Sopan Kurkute et al.
Interactive discussion
Status: open (until 19 Dec 2019)
Status: open (until 19 Dec 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Sopan Kurkute et al.
Sopan Kurkute et al.
Viewed  
Total article views: 160 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
142 18 0 160 2 1
  • HTML: 142
  • PDF: 18
  • XML: 0
  • Total: 160
  • BibTeX: 2
  • EndNote: 1
Views and downloads (calculated since 14 Oct 2019)
Cumulative views and downloads (calculated since 14 Oct 2019)
Viewed (geographical distribution)  
Total article views: 147 (including HTML, PDF, and XML) Thereof 145 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 13 Nov 2019
Publications Copernicus
Download
Short summary
Our research has analyzed the surface water budget and atmospheric water vapor budget over western Canada from a set of convection-permitting regional climate simulations using 4-km WRF. The pseudo-global warming simulation shows a great increase in evapotranspiration and an enhanced water cycle. We found the orographic effects on the water vapor budget is significant over the Saskatchewan River Basin, indicating the need for high-resolution regional climate modeling to reflect the effects.
Our research has analyzed the surface water budget and atmospheric water vapor budget over...
Citation