SUPPLEMENTARY MATERIAL

A FIELD VALIDATED SURROGATE MODEL FOR OPTIMUM PERFORMANCE OF IRRIGATED CROPS IN REGIONS WITH SHALLOW SALTY GROUNDWATER

Zhongyi Liu¹, Zailin Huo¹*, Chaozi Wang¹, Limin Zhang², Xianghao Wang¹, Guanhua Huang¹, Xu Xu¹, Tammo S. Steenhuis³*

S1 Potential evaporation and transpiration

As a critical budget term of hydrological cycle, the evapotranspiration has great influence on soil moisture content and crop growth. The reference evapotranspiration \(ET_0 \) is calculated by FAO-56 Penman-Monteith method (Allen et al., 1998).

\[
ET_0 = \frac{0.408\Delta (R_n - G) + \gamma \frac{900}{T + 273} u_2 (e_s - e_a)}{\Delta + \gamma (1 + 0.34 u_2)}
\]

(S1)

where \(\Delta \) is the slope of vapor pressure curve (kPa°C\(^{-1}\)), \(R_n \) is the net radiation at the reference grassland (alfalfa) surface (MJ (m\(^2\) · d\(^{-1}\)), \(G \) is the soil heat flux (MJ (m\(^2\) · d\(^{-1}\)), \(\gamma \) is the psychrometric constant (kPa°C\(^{-1}\)), \(T \) is the mean air temperature (°C), \(u_2 \) is the wind speed (m s\(^{-1}\)), \(e_s \) and \(e_a \) are the saturation vapor pressure and actual vapor pressure (kPa). The potential evapotranspiration \(ET_p \) of crop is calculated as:

\[
ET_p = K_c \times ET_0
\]

(S2)

where \(K_c \) is the crop coefficient but the meaning of this \(K_c \) is not the same as the \(K_c \) that described by (Allen et al., 1998). In this study, the calculation of \(K_c \) is referred to the studies of Sau et al., (2004) and DeJonge et al., (2012).
\[K_c = 1.0 + (K_{c_{\text{max}}} - 1.0) \times \frac{\text{LAI}}{\text{LAI}_{\text{max}}} \] \hspace{1cm} (S3)

where LAI is the leaf area index, \(\text{LAI}_{\text{max}} \) is the maximum LAI value, and \(K_{c_{\text{max}}} \) is the possible \(K_c \) with largest leaf area index.

The evapotranspiration includes soil evaporation and crop transpiration. Here, the potential evapotranspiration was partitioned to potential evaporation (\(E_p \)) and potential transpiration (\(T_p \)) according to the study of (Ritchie et al., 1972). The ratio of \(E_p \) to \(T_p \) is according to the crop development stage of the leaf canopy occupied, expressed as \(\tau \),

\[\tau = \exp[-(K_b)(\text{LAI})] \] \hspace{1cm} (S4)

\[E_p = \tau \times E_T \] \hspace{1cm} (S5)

\[T_p = E_T - E_p \] \hspace{1cm} (S6)

where \(K_b \) is the dimensionless canopy extinction coefficient.

S2 Equations used to calculate phonological parameters in EPICS taken from EPIC

The phonological development of crop in the EPIC model (Williams et al., 1989) is based on daily heat unit accumulation.

Crop growth

The crop height can be calculated with equation:

\[H_t = H_{\text{mx}} \sqrt{\text{HUF}_t} \] \hspace{1cm} (S7)

where \(H_t \) is the crop height (cm) on day \(t \) since seeding (cm), \(H_{\text{mx}} \) is the maximum crop height (cm) and \(\text{HUF}_t \) is the heat factor on day \(t \). \(\text{HUF}_t \) is equal to

\[\text{HUF}_t = \frac{\text{HUI}_t}{\text{HUI}_t + \exp(\alpha_1 - \alpha_2 \text{HUI}_t)} \] \hspace{1cm} (S8)

Where \(\alpha_1 \) and \(\alpha_2 \) are crop parameters and \(\text{HUI}_t \) is the heat unit index of day \(t \), ranging
from 0 at seeding to 1 at physiological maturity.

\[HUI_t = \frac{\sum_{k=1}^{t} HU_k}{PHU} \quad (S9) \]

where PHU is the potential heat units required for crop maturity and HU$_k$ is the value of heat unit on day \(k \) after seeding that can be expressed as:

\[HU_t = \left(\frac{T_{mx,t} + T_{mn,t}}{2} \right) - T_b \quad (S10) \]

where \(T_{mx,t} \) is maximum temperature (°C) and \(T_{mn,t} \) are the minimum temperature (°C) and \(T_b \) is crop-specific base temperature (°C).

Leaf Area Index (LAI)

The leaf area index (LAI) is the function of heat units, crop stress and crop development stages. The LAI can be calculated from the emergence to the start of leaf area decline:

\[LAI_t = LAI_{t-1} + \Delta LAI_t \quad for \ t \geq t_{deline} \quad (S11) \]

where

\[\Delta LAI_t = (\Delta HUF_t)(LAI_{mx})(1 - \exp[5(LAI_{t-1} - LAI_{mx})])(REG^{0.5}) \quad (s12) \]

From the start of leaf decline to the end of the growing season, the equation used to estimate LAI can be expressed as

\[LAI_t = LAI_0 \left[\frac{1 - HUI_t}{1 - HUI_0} \right]^{ad} \quad for \ t > t_{deline} \quad (s13) \]

\[REG_t = \min(WS_t, TS_t) \quad (s14) \]

\[WS_t = \frac{T_{at}}{T_{pt}} \quad (s15) \]

\[TS_t = \sin \left[\pi \left(\frac{T_{mean,t} - T_b}{T_0 - T_b} \right) \right] \quad (s16) \]

where REG is the minimum crop stress factor and \(LAI_{mx} \) is the maximum leaf area index,
ad is an exponent that governs LAI decline rate for crop, H_{U10} is the HUI value when LAI starts declining and LAI_0 is the actual largest LAI. WS is the water stress factor, T_a is the actual transpiration, T_p is the potential transpiration. TS is the plant temperature stress factor, T_{mean} is the average daily temperature, T_b is the base temperature, T_0 is the crop optimal temperature.

Root Growth

The root length is simulated as the function of heat units and the maximum root depth. And usually the crop root length will be maximum before the mature stage. The root depth can be calculated by:

\[
RD_t = RD_{t-1} + \Delta RD_t
\]

(s17)

\[
\Delta RD_t = 2.5 \times RD_{mx} \times (\Delta HU_{F_t}) \quad RD_t \leq RD_{mx}
\]

(s18)

\[
RD_t = RD_{mx} \quad RD_t > RD_{mx}
\]

(s19)

Where ΔRD_t is the variation of root depth at day t (cm), RD_{mx} is the maximum crop root depth (cm).
REFERENCES

