Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Discussion papers
https://doi.org/10.5194/hess-2019-660
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-660
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 06 Jan 2020

Submitted as: research article | 06 Jan 2020

Review status
This preprint is currently under review for the journal HESS.

Climate-dependent propagation of precipitation uncertainty into the water cycle

Ali Fallah1,2, Sungmin O2, and Rene Orth2 Ali Fallah et al.
  • 1Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
  • 2Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, D-07745, Jena, Germany

Abstract. Precipitation is a crucial variable for hydro-meteorological applications. Unfortunately, rain gauge measurements are sparse and unevenly distributed, which substantially hampers the use of in-situ precipitation data in many regions of the world. The increasing availability of high-resolution gridded precipitation products presents a valuable alternative, especially over gauge-sparse regions. Nevertheless, uncertainties and corresponding differences across products can limit the applicability of these data. This study examines the usefulness of current state-of-the-art precipitation datasets in hydrological modelling. For this purpose, we force a conceptual hydrological model with multiple precipitation datasets in > 200 European catchments. We consider a wide range of precipitation products, which are generated via (1) interpolation of gauge measurements (E-OBS and GPCC V.2018), (2) combination of multiple sources (MSWEP V2) and (3) data assimilation into reanalysis models (ERA-Interim, ERA5, and CFSR). For each catchment, runoff and evapotranspiration simulations are obtained by forcing the model with the various precipitation products. Evaluation is done at the monthly time scale during the period of 1984–2007. We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs, and thus show significant differences between the simulations. By contrast, simulated evapotranspiration is generally much less influenced. The results are further analysed with respect to different hydro-climatic regimes. We find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration. Finally, we perform an indirect performance evaluation of the precipitation datasets by comparing the runoff simulations with streamflow observations. Thereby, E-OBS yields the best agreement, while furthermore ERA5, GPCC V.2018 and MSWEP V2 show good performance. In summary, our findings highlight a climate-dependent propagation of precipitation uncertainty through the water cycle; while runoff is strongly impacted in comparatively wet regions such as Central Europe, there are increasing implications on evapotranspiration towards drier regions.

Ali Fallah et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Ali Fallah et al.

Viewed

Total article views: 385 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
281 97 7 385 27 9 9
  • HTML: 281
  • PDF: 97
  • XML: 7
  • Total: 385
  • Supplement: 27
  • BibTeX: 9
  • EndNote: 9
Views and downloads (calculated since 06 Jan 2020)
Cumulative views and downloads (calculated since 06 Jan 2020)

Viewed (geographical distribution)

Total article views: 292 (including HTML, PDF, and XML) Thereof 290 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 04 Apr 2020
Publications Copernicus
Download
Short summary
We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs, and thus show significant differences between the simulations. By contrast, simulated evapotranspiration is generally much less influenced. The results are further analysed with respect to different hydro-climatic regimes. We find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration.
We find that simulated runoff values are highly dependent on the accuracy of precipitation...
Citation