Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Discussion papers
https://doi.org/10.5194/hess-2019-661
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-661
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Submitted as: research article 10 Jan 2020

Submitted as: research article | 10 Jan 2020

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Hydrology and Earth System Sciences (HESS).

A novel approach for the assessment of morphological evolution based on observed water levels in tide-dominated estuaries

Huayang Cai1,2, Ping Zhang1,2, Erwan Garel3, Pascal Matte4, Shuai Hu1,2, Feng Liu1,2, and Qingshu Yang1,2 Huayang Cai et al.
  • 1Institute of Estuarine and Coastal Research/State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou, China
  • 2Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
  • 3Centre for Marine and Environmental Research (CIMA), University of Algarve, Portugal
  • 4Meteorological Research Division, Environment and Climate Change Canada, Quebec, Canada

Abstract. Assessing the impacts of both natural (e.g., tidal forcing from the ocean) and human-induced changes (e.g., dredging for navigation, land reclamation) on estuarine morphology is particularly important for the protection and management of the estuarine environment. In this study, a novel analytical approach is proposed for the assessment of estuarine morphological evolution in terms of tidally averaged depth on the basis of the observed water levels along the estuary. The key lies in deriving a relationship between wave celerity and tidal damping or amplification. For given observed water levels at two gauging stations, it is possible to have a first estimation of both wave celerity (distance divided by tidal travelling time) and tidal damping or amplification rate (tidal range difference divided by distance), which can then be used to predict the morphological changes via an inverse analytical model for tidal hydrodynamics. The proposed method is applied to the Lingdingyang Bay of the Pearl River Estuary, located on the southern coast of China, to analyse the historical development of the tidal hydrodynamics and morphological evolution. The analytical results show surprisingly good correspondence with observed water depth and volume in this system. The merit of the proposed method is that it provides a simple approach for understanding the decadal evolution of the estuarine morphology through the use of observed water levels, which are usually available and can be easily measured.

Huayang Cai et al.
Interactive discussion
Status: open (until 06 Mar 2020)
Status: open (until 06 Mar 2020)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Huayang Cai et al.
Huayang Cai et al.
Viewed  
Total article views: 148 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
106 38 4 148 3 3
  • HTML: 106
  • PDF: 38
  • XML: 4
  • Total: 148
  • BibTeX: 3
  • EndNote: 3
Views and downloads (calculated since 10 Jan 2020)
Cumulative views and downloads (calculated since 10 Jan 2020)
Viewed (geographical distribution)  
Total article views: 73 (including HTML, PDF, and XML) Thereof 73 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 24 Jan 2020
Publications Copernicus
Download
Short summary
Understanding the morphological changes in estuaries due to natural processes and human interventions is especially important with regard to sustainable water management and ecological impacts on the estuarine environment. In this contribution, we explore the morphological evolution in tide-dominated estuaries by means of a novel analytical approach using the observed water levels along the channel. The method could serve as a useful tool to understand the evolution of estuarine morphology.
Understanding the morphological changes in estuaries due to natural processes and human...
Citation