Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.256 IF 4.256
  • IF 5-year value: 4.819 IF 5-year
    4.819
  • CiteScore value: 4.10 CiteScore
    4.10
  • SNIP value: 1.412 SNIP 1.412
  • SJR value: 2.023 SJR 2.023
  • IPP value: 3.97 IPP 3.97
  • h5-index value: 58 h5-index 58
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 99 Scimago H
    index 99
Discussion papers
https://doi.org/10.5194/hess-2019-98
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-2019-98
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 04 Mar 2019

Research article | 04 Mar 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Hydrology and Earth System Sciences (HESS).

Partitioning snowmelt and rainfall in the critical zone: effects of climate type and soil properties

John C. Hammond1, Adrian A. Harpold2, Sydney Weiss3, and Stephanie K. Kampf1 John C. Hammond et al.
  • 1Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO 80523
  • 2Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV 89557
  • 3College of Earth, Ocean, and Atmospheric Science, Oregon State University, Corvallis, OR 97331

Abstract. Streamflow generation and deep groundwater recharge in high elevation and high latitude locations may be vulnerable to loss of snow, making it important to quantify how snowmelt is partitioned between soil storage, deep drainage, evapotranspiration, and runoff. Based on previous findings, we hypothesize that snowmelt produces greater streamflow and deep drainage than rainfall and that this effect is greatest in dry climates. To test this hypothesis we examine how snowmelt and rainfall partitioning vary with climate and soil properties using a physically based variably saturated subsurface flow model, HYDRUS-1D. To represent climate variability we use historical inputs from five SNOTEL sites in each of three mountain regions with humid to semiarid climates: Northern Cascades, Sierra Nevada, and Uinta. Each input scenario is run with three soil profiles of varying hydraulic conductivity, soil texture, and bulk density. We also create artificial input scenarios to test how the concentration of input in time, conversion of snow to rain input, and soil profile depth affect partitioning of input into deep drainage and runoff. Results indicate that event-scale runoff is higher for snowmelt than for rainfall due to higher antecedent moisture and input rates in both wet and dry climates. At the annual scale, surface runoff also increases with snowmelt fraction, whereas deep drainage is not correlated with snowmelt fraction. Deep drainage is less affected by changes from snowmelt to rainfall because it is controlled by deep soil moisture changes over longer time scales. However, extreme scenarios with input highly concentrated in time, such as during melt of a deep snowpack, yield greater deep drainage below the root zone than intermittent input. Soil texture modifies daily wetting and drying patterns but has limited effect on annual scale partitioning of rain and snowmelt, whereas increases in soil depth decrease runoff and increase deep drainage. Overall these results indicate that runoff may be substantially reduced with seasonal snowpack decline in all climates. These mechanisms help explain recent observations of streamflow sensitivity to changing snowpack and emphasize the need to develop strategies to mitigate impacts of reduced streamflow generation in places most at risk for shifts from snow to rain.

John C. Hammond et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
John C. Hammond et al.
John C. Hammond et al.
Viewed  
Total article views: 449 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
351 97 1 449 26 4 4
  • HTML: 351
  • PDF: 97
  • XML: 1
  • Total: 449
  • Supplement: 26
  • BibTeX: 4
  • EndNote: 4
Views and downloads (calculated since 04 Mar 2019)
Cumulative views and downloads (calculated since 04 Mar 2019)
Viewed (geographical distribution)  
Total article views: 295 (including HTML, PDF, and XML) Thereof 292 with geography defined and 3 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 21 May 2019
Publications Copernicus
Download
Short summary
Streamflow in high elevation and high latitude areas may be vulnerable to snow loss, making it important to quantify how snowmelt and rainfall are divided between soil storage, drainage below plant roots, evapotranspiration and runoff. We examine this separation in different climates and soils using a physically based model. Results show runoff may be reduced with snowpack decline in all climates. The mechanisms responsible help explain recent observations of streamflow sensitivity to snow loss.
Streamflow in high elevation and high latitude areas may be vulnerable to snow loss, making it...
Citation