Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.936 IF 4.936
  • IF 5-year value: 5.615 IF 5-year
    5.615
  • CiteScore value: 4.94 CiteScore
    4.94
  • SNIP value: 1.612 SNIP 1.612
  • IPP value: 4.70 IPP 4.70
  • SJR value: 2.134 SJR 2.134
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 107 Scimago H
    index 107
  • h5-index value: 63 h5-index 63
Discussion papers
https://doi.org/10.5194/hessd-3-1987-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
https://doi.org/10.5194/hessd-3-1987-2006
© Author(s) 2006. This work is licensed under
the Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Submitted as:   01 Aug 2006

Submitted as:   | 01 Aug 2006

Review status
This discussion paper is a preprint. A revision of the manuscript for further review has not been submitted.

A statistical post-processor for accounting of hydrologic uncertainty in short-range ensemble streamflow prediction

D.-J. Seo, H. D. Herr, and J. C. Schaake D.-J. Seo et al.
  • Hydrology Laboratory, Office of Hydrologic Development, National Weather Service, National Oceanic and Atmospheric Administration, 1325 East-West Highway, Silver Spring, MD 20910, USA

Abstract. In addition to the uncertainty in future boundary conditions of precipitation and temperature (i.e. the meteorological uncertainty), parametric and structural uncertainties in the hydrologic models and uncertainty in the model initial conditions (i.e. the hydrologic uncertainties) constitute a major source of error in hydrologic prediction. As such, accurate accounting of both meteorological and hydrologic uncertainties is critical to producing reliable probabilistic hydrologic prediction. In this paper, we describe and evaluate a statistical procedure that accounts for hydrologic uncertainty in short-range (1 to 5 days ahead) ensemble streamflow prediction (ESP). Referred to as the ESP post-processor, the procedure operates on ensemble traces of model-predicted streamflow that reflect only the meteorological uncertainty and produces post-processed ensemble traces that reflect both the meteorological and hydrologic uncertainties. A combination of probability matching and regression, the procedure is simple, parsimonious and robust. For a critical evaluation of the procedure, independent validation is carried out for five basins of the Juniata River in Pennsylvania, USA, under a very stringent setting. The results indicate that the post-processor is fully capable of producing ensemble traces that are unbiased in the mean and in the probabilistic sense. Due primarily to the uncertainties in the cumulative probability distributions (CDF) of observed and simulated flows, however, the unbiasedness may be compromised to a varying degree in real world situations. It is also shown, however, that the uncertainties in the CDF's do not significantly diminish the value of post-processed ensemble traces for decision making, and that probabilistic prediction based on post-processed ensemble traces significantly improves the value of single-value prediction at all ranges of flow.

D.-J. Seo et al.
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
  • RC S972: 'Review', Anonymous Referee #2, 20 Sep 2006 Printer-friendly Version
Interactive discussion
Status: closed (peer review stopped)
Status: closed (peer review stopped)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
  • RC S972: 'Review', Anonymous Referee #2, 20 Sep 2006 Printer-friendly Version
D.-J. Seo et al.
D.-J. Seo et al.
Viewed  
Total article views: 1,336 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
697 601 38 1,336 55 42
  • HTML: 697
  • PDF: 601
  • XML: 38
  • Total: 1,336
  • BibTeX: 55
  • EndNote: 42
Views and downloads (calculated since 01 Feb 2013)
Cumulative views and downloads (calculated since 01 Feb 2013)
Cited  
Saved  
Discussed  
No discussed metrics found.
Latest update: 24 Aug 2019
Publications Copernicus
Download
Citation